
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2017

Optimizing co-products production in dry-grind
corn fermentation
Lei Fang
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Agriculture Commons, and the Food Science Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Fang, Lei, "Optimizing co-products production in dry-grind corn fermentation" (2017). Graduate Theses and Dissertations. 15301.
https://lib.dr.iastate.edu/etd/15301

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F15301&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F15301&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F15301&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F15301&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F15301&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F15301&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1076?utm_source=lib.dr.iastate.edu%2Fetd%2F15301&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/84?utm_source=lib.dr.iastate.edu%2Fetd%2F15301&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/15301?utm_source=lib.dr.iastate.edu%2Fetd%2F15301&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

Optimizing co-products production in dry-grind corn fermentation 

 

 

by 

 

Lei Fang  

 

 

 

A dissertation submitted to the graduate faculty 

 

in partial fulfillment of the requirements for the degree of 

 

DOCTOR OF PHILOSOPHY 

 

 

Major: Food Science and Technology 

 

Program of Study Committee: 

Buddhi Lamsal, Co-major Professor 

Tong Wang, Co-major Professor 

Joey Talbert 

Nuria Acevedo 

Kurt Rosentrater 

 

The student author and the program of study committee are solely responsible for the content of 

this dissertation. The Graduate College will ensure this dissertation is globally accessible and 

will not permit alterations after a degree is conferred. 

 

 

 

 

Iowa State University 

 

Ames, Iowa 

 

2017 

 

 

Copyright © Lei Fang, 2017. All rights reserved 

 

 

 

 

 



www.manaraa.com

ii 

 

TABLE OF CONTENTS 

ACKNOWLEDGMENTS ............................................................................................................. iii 

ABBREVIATIONS ....................................................................................................................... iv 

ABSTRACT .................................................................................................................................... v 

CHARPTER 1. GENERAL INTRODUCTION ............................................................................. 1 

1 Dry-grind ethanol process ................................................................................................. 1 

2 Distillers corn oil (DCO) .................................................................................................. 4 

3 Dried distillers grain with solubles (DDGS) ..................................................................... 8 

4 Objectives ....................................................................................................................... 10 

References: ............................................................................................................................ 11 

CHAPTER 2. SYNERGISTIC EFFECT OF SURFACTANTS AND SILICA 

NANOPARTICLES ON OIL RECOVERY FROM CONDENSED CORN DISTILLERS 

SOLUBLES (CCDS) .................................................................................................................... 13 

Abstract: ................................................................................................................................ 14 

1 Introduction ........................................................................................................................ 15 

2 Materials and Methods ....................................................................................................... 17 

3 Results and Discussion ...................................................................................................... 20 

4 Conclusion ......................................................................................................................... 27 

5 Acknowledgment ............................................................................................................... 27 

References: ............................................................................................................................ 28 

Tables and Figures ................................................................................................................ 30 

CHAPTER 3. USE OF SURFACTANT AND HYDROLYZING ENZYMES IN DRY-GRIND 

CORN PROCESSING IMPROVES ETHANOL YIELD AND DISTILLERS CORN OIL 

RECOVERY ................................................................................................................................. 37 

Abstract: ................................................................................................................................ 38 

1 Introduction ........................................................................................................................ 40 

2 Materials and Methods ....................................................................................................... 42 

3 Results and Discussion ...................................................................................................... 46 

4 Conclusion ......................................................................................................................... 53 

5 Acknowledgment ............................................................................................................... 53 

References: ............................................................................................................................ 54 

Tables and Figures ................................................................................................................ 56 

CHAPTER 4. EFFECTS OF USING HYDROLYZING ENZYMES DURING 

FERMENTATION ON CHARACTERISTICS OF DRY DISTILLERS GRAIN WITH 

SOLUBLES (DDGS) .................................................................................................................... 62 

Abstract: ................................................................................................................................ 63 

1 Introduction ........................................................................................................................ 64 

2 Materials and Methods ....................................................................................................... 66 

3 Results and Discussion ...................................................................................................... 71 

4 Conclusion ......................................................................................................................... 78 

5 Acknowledgment ............................................................................................................... 78 

References: ............................................................................................................................ 79 

Tables and Figures ................................................................................................................ 81 

CHAPTER 5. GENERAL CONCLUSION .................................................................................. 86 

 



www.manaraa.com

iii 

 

ACKNOWLEDGMENTS 

 

 

I would like to thank my major professors, Drs. Buddhi Lamsal and Tong Wang, and my 

committee members, Drs. Joey Talbert, Nuria Acevedo, and Kurt Rosentrater, for their guidance 

and support throughout the course of this research. 

In addition, I would also like to thank my family, friends, colleagues, the department 

faculty and staff for making my time at Iowa State University a wonderful experience. I want to 

also offer my appreciation to ISU Fermentation Institute and Bioeconomy Institute, who 

provided funding for my research, without your support, this thesis would not have been 

possible. 

  



www.manaraa.com

iv 

 

ABBREVIATIONS 

 

CCDS                    Condensed Corn Distillers Solubles  

C500                     Dry-grind ethanol process of using 500 ppm Tween® 80 in corn slurry 

DCO                     Distillers Corn Oil 

DDGS                   Dried Distillers Grain with Solubles 

F500                      Dry-grind ethanol process of using 500 ppm Tween® 80 in corn slurry and 

Fermgen enzyme in fermentation step 

FAA                      Free Amino Acid 

HLB                      Hydrophilic-Lipophilic-Balance 

ISU                        Iowa State University 

NSPs                      Non-Starch Polysaccharides 

PC                         Pectinase and Cellulase mix 

PC500                   Dry-grind ethanol process of using 500 ppm Tween® 80 in corn slurry and 

pectinase and cellulase enzymes in fermentation step 

WHC                    Water Holding Capacity 

 

 

 

 

 



www.manaraa.com

v 

 

ABSTRACT 

 

To improve the profitability of the industry, ethanol plants are capturing the values of 

coproducts, including distillers corn oil (DCO) and dry distillers grain with solubles (DDGS). 

Current oil recovery method can only recover 40% of oil contained in corn, which needs to be 

improved along with DDGS quality. This study explores the use of surfactants and hydrolyzing 

enzymes to improve oil recovery and DDGS quality. Our research has shown that the use of non-

ionic surfactants in dry-grind ethanol process affected oil partition in thin stillage and improved 

final oil yield. The surfactant replaced protein from the emulsion interface and formed an un-

stable oil-in-water emulsion, and silica nano-particle enhanced the demulsification by using 

surfactant. Surfactants also significantly improved the oil partition in thin stillage by washing the 

adhering oil from wet cake surface into liquid phase. The synergistic effect between hydrolyzing 

enzyme and surfactant was observed on oil recovery from condensed corn distillers solubles 

(CCDS). Using protease, cellulase and pectinase enzymes hydrolyzed the non-fermentable 

components (protein and non-starch polysaccharides) and improved ethanol production yield and 

increased oil partition in thin stillage. The use of protease enzyme decreased oil recovery from 

CCDS and this reduction can be overcome by using surfactant during fermentation step. The 

enzyme treatments also have significant effects on DDGS properties, especially on the 

digestibility. Protease enzyme treated DDGS had low protein content and protein digestibility. 

Whereas, pectinase and cellulase treated DDGS was easy to digest and provided higher amount 

of required amino acids compared to other treatments. Overall, the methods for improving DCO 

recovery were successfully developed and the effects of hydrolyzing enzymes on DDGS quality 

were also determined. The results of this research point to novel ways to modify production 

strategies for ethanol plants to enhance profitability.
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CHARPTER 1. GENERAL INTRODUCTION 

 

1  Dry-grind ethanol process 

The proportion of the US corn harvest used as the feed stock for fuel ethanol has reached to 35% in 

2015, and is expected to maintain stable in the next decade by USDA Agricultural projections to 2024. To 

produce corn-based fuel ethanol in United States, two methods are widely used, dry-grind and wet mill, 

and dry-grind production accounts for about 90% of the total production of 2015. In 2015, 4.6 billion 

bushels of corn was used for fuel ethanol production in dry-grind ethanol process, and only 0.5 billion 

bushels of corn was used in wet mill fermentation reported by Grain Crushings and Co-Products 

Production 2015 Summary. In this dissertation, we only discuss the dry-grind corn ethanol process.  

The conventional dry-grind ethanol process includes five basic steps, which are grinding, cooking, 

liquefaction, saccharification and fermentation (Figure 1). The hammer mill or roller mill is used to do the 

grinding, the grinding helps to break the tough outer shells of the corn and increase the availability of the 

starch. Once the corn is broken, it is mixed with water for the corn slurry of 30% solid content. The corn 

slurry goes through cooking and liquefaction. The cooking step gelatinized corn starch and forms a 

viscous suspension at temperature above 100°C following by liquefaction, in which α-amylase hydrolyzes 

long chains of starch into smaller chains and reduce viscosity at lower temperature (80- 90°C). After 

liquefaction, saccharification is needed to further hydrolysis to glucose at 30°C by gluco-amylase for 

fermentation. The chemical reaction of fermentation by yeast is where one mole of glucose yields 2 moles 

of ethanol and 2 moles of carbon dioxide. The common yeast to use is saccharomyces cerevisiae, which is 

a unicellular fungus. The fermentation takes place in tank at 30-32°C for 2-3 days in a batch process 

(Bothast and Schlicher, 2004). Supplemental nitrogen/ or protease is added for N requirement of yeast. 
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Also, it is possible to do saccharification and fermentation in one step, which is called simultaneous 

saccharification and fermentation. Both gluco-amylase and yeast are added into fermentation tank. As the 

glucose is formed, it is fermented, which reduces enzyme product inhibition. It lowers initial glucose 

concentrations, lowers contamination risk, lowers energy requirements, and produces higher yields of 

ethanol. Because the simultaneous saccharification and fermentation is done in one unit, it can also 

improve capital costs and save residence time.  

Dry-grind corn ethanol industry was very profitable in the past. However, due to the sharp decline in 

crude oil price, the profits from corn ethanol in 2015 fell sharply (Irwin and Good, 2015; Wisner, 2015). 

Since the ethanol plants are still in the low margin time for ethanol, the additional revenue from co-

products are becoming more important for plants to survive. Two main co-products are produced from 

this process, including distillers corn oil (DCO) and dried distillers grain with solubles (DDGS). 
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Figure 1. Process diagram of the conventional dry-grind ethanol process 
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2 Distillers corn oil (DCO) 

DCO is an excellent feed stock for biodiesel plants and energy source in animal feed. The production 

of DCO has increased over the years especially since 2008 (Jayasinghe, 2015). In 2015, 1.4 million tons 

of DCO was produced from dry-grind plants in United States (Grain Crushings and Co-Products 

Production 2015 Summary), and the main markets for the DCO are biodiesel plants and the animal feed 

industries. Until today, the DCO already becomes the second most popular feedstock choice in the 

biodiesel industry, surpassing the usage of canola oil and following the soybean oil. The DCO revenue 

has been key in times of very low margin periods for ethanol plants, most recently seen when crude oil 

price crashed from early 2015 to present. 

To extract DCO with low cost, DCO is currently only extracted from the thin stillage stream. As 

described in U. S. patent 7601858 (Cantrell and Winsness, 2009), after distillation and decanting (Figure 

1), thin stillage is further evaporated into condensed corn distillers solubles (CCDS) with 60~85% 

moisture content, and the DCO is extracted from the CCDS by a disk stack centrifuge. Theoretically, there 

are two ways to improve the DCO final yield, 1) improving oil recovery rate from CCDS; and 2) 

increasing oil partitioning in thin stillage (Wang, 2008) 

2.1 DCO extraction from CCDS 

 The DCO yield from centrifugation alone has not been satisfactory, because DCO presents in 

different forms in CCDS, including oil-in-water emulsion, surface adhering oil, oil in oil bodies and oil in 

unbroken cells (Majoni and Wang, 2010). In this case, other treatments on CCDS before centrifugal 

separation may be beneficial to achieve higher oil yield.  

To get a higher oil yield, some efforts have been applied, including physical, chemical and enzymatic 

treatments on CCDS. Corn protein had very important role on stabilizing oil in CCDS. Enzyme treatments 

have been tested on CCDS for improving oil recovery, and an increase of 45% more oil recovery from 
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CCDS was observed when a protease was added in CCDS (Majoni et al. 2010b). Moreover, Majoni et al. 

(2010a) reported a sharp increase of oil recovery from CCDS when temperature was increased to 60°C, 

and no more increase was found when temperature was higher than 60°C. This observation indicated that 

a partition of oil is present in protein stabilized oil-in-water emulsion. In addition, the co-extraction for 

DCO and zein protein significantly increased oil recovery from 68% to 89%, which further proved the 

function of corn protein on oil stabilization in CCDS (Majoni et al., 2010a). 

Many other methods were tested to improve oil recovery from CCDS, including adjusting pH and 

churning (Majoni et al., 2010 a). However, many of these treatments are non-practical for industry-level 

processing, since potential time and money cost could be high for doing these treatments on CCDS. To 

date, the acceptable method for ethanol plants to improve oil recovery is adding chemical aids into CCDS 

before centrifugation. Numbers of chemical aids have been designed for oil recovery from CCDS 

including FoodPro SA9843 corn oil yield improver (General Electric, Trevose, PA, USA), PTV M-5309 

corn oil extraction aid (Ashland Chemical, Covington, KY, USA), Ashland DPI-428 (Ashland Hercules 

Water Technologies, Wilmington, DE, USA), and Hydri-Maize Demulsifier 300 (Hydrite Chemical Co., 

Waterloo, IA, USA). However, detailed composition of commercial aid packages and mechanism of 

action are lacking.  

To extract more oil from CCDS, it is necessary to understand the mechanism of increasing oil 

recovery by using oil extraction aids. Since protein plays a critical role on stabilizing oil in CCDS, one 

way to eliminate the function of protein as a stabilizer is to replace it by surfactant, which is the theory of 

protein-surfactant competition. Wilde et al. (2004) summarized that surfactants, which have lower 

molecular weight, are more surface active than proteins and will compete for a position on interfacial 

surface with protein. However, a high concentration of protein on the interfacial surface contributes to a 

strong interaction among protein molecules, and this interaction affects the stability of protein stabilized 
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emulsion (Mackie et al., 1999). High concentration of protein on emulsion interface forms a viscoelastic 

layer, and this layer is much stronger than the surfactant layer. When the surfactant replaces the position 

of protein, the viscoelastic layer can be interrupted and make the emulsion unstable. This theory has been 

utilized in a few studies of aqueous extraction processing to improve vegetable oil recovery. Campbell 

and Glatz (2009) observed a significantly higher soybean oil yield when sodium dodecyl sulfate (SDS) 

was applied by disrupting a viscoelastic protein film at oil droplet interface. Zhang and Wang (2016) 

significantly improved peanut oil yield from 50% to 76% by adding Tween 20 into peanut paste and they 

proposed that Tween 20 competed with peanut protein on emulsion interface and make the emulsion 

unstable. 

Solid particles have been mentioned by Sheppard et al. (2012) to be a functional enhancer in 

commercial oil extraction aid. Solid particles can be used in emulsification or demulsification in oil-in-

water emulsion (Binks, 2002), and the synergistic effect of using mixtures of surfactants and particles on 

emulsification stability draw attentions (Nesterenko et al., 2014). Solid particles are usually used as 

enhancer in anti-foaming package. In de-foaming, mixture of solid particles and hydrophobic oil has 

higher penetration ability on interface than using them alone (Koczo et al., 1994). When solid particle and 

hydrophobic oil penetrate the interface, an unstable oil-bridge can be formed in the interface, which 

makes the interface unstable and eventually break (Denkov, 1999). Since the de-foaming and 

demulsification share similar mechanism, the method of de-foaming by using solid particles could be 

applied on demulsification. 

2.2 DCO partition in thin stillage 

After decanting, there is still a large portion of oil staying in the wet cake. In this case, methods of 

breaking cell structure might be efficient to improve oil partition in thin stillage. Wang et al. (2008) 

examined the effects of corn grinding methods on oil distribution in thin stillage, and found the flaked and 
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then extruded corn meal released the highest amount of free oil which was 25% compared to 7% for the 

average of other treatments.  

 Enzyme hydrolysis might be a more efficient way to improve oil partition without any changes on 

current plant design compared to mechanical treatments; it has been applied on dry-grind ethanol plants 

mainly for improving ethanol yield, but increasing DCO recovery has also been claimed. For example, 

FermgenTM (Dupont) is an acid proteolytic enzyme which can randomly hydrolyze corn protein to 

enhance yeast efficiency in dry-grind fermentation; OlexaTM (Novozymes) is an acid proteolytic enzyme 

which targets on oleosin protein and helps to extract more DCO; AvantecTM, which is a protease involved 

enzymatic product from Novozymes, claims for higher ethanol yield and oil recovery yield. The benefits 

of enzyme hydrolysis on oil partitioning have been corroborated by the scientific literatures. 

Luanthongkam et al. (2015) reported an increase of oil partition in thin stillage from 32% to 78% when 

protease, phytase and non-starch hydrolyzing enzyme were used during fermentation. Yao et al. (2014) 

observed significantly higher oil partition (60%) in thin stillage when a blend of polysaccharide 

hydrolyzing enzymes was used, compared to 56% in the control. Wang et al. (2009) used protease and 

cellulase during fermentation and 70% oil partition in thin stillage was achieved, compared with 50% in 

the control. However, high oil partition in thin stillage can’t be translated to high oil recovery from 

CCDS. No reports were found on how enzyme hydrolysis of non-fermentable matters affects oil recovery 

from CCDS. 

Moreover, part of the corn oil presents in surface adhering oil during fermentation (Majoni and 

Wang, 2010), and the surface adhering oil is highly likely to stay with wet cake after decanting step. In 

this case, surfactant can be used as detergent to move this part of oil from solid surface to liquid phase.  

Combining the effects of surfactant on emulsion stability in CCDS and washing out adhering oil on 

wet cake surface, surfactant might be an appropriate choice to improve both oil partition and oil recovery. 
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3 Dried distillers grain with solubles (DDGS) 

DDGS is another valuable co-product from dry-grind ethanol process, and it is an excellent and low 

cost alternative feed ingredient. The high energy, protein, and phosphorus contents of DDGS provide 

excellent animal health and food product quality. Due to these characteristics, DDGS becomes one of the 

most popular feed ingredient to use in animal feeds around the world to partially replace some of the 

expensive ingredient, such as whole corn, soybean meal and phosphorus ingredients.  

3.1 DDGS production 

The conventional procedure of making DDGS is shown in Figure 1. After distillation, the whole 

stillage is decanted into thin stillage and wet cake. Thin stillage is further concentrated into CCDS, and 

DCO might be recovered as a co-product from it. The CCDS still contains high moisture (65~70%) and 

solids with high nutritional value, such as yeast cells and very small corn particles. In this case, CCDS is 

mixed with wet cake, and even DDGS from previous batches, to reduce the moisture content in the 

mixture before going to rotary drum drier. The final DDGS product generally contains approximately 

10% of moisture, 12% of crude fat, 30% of crude protein and 40% of fiber. Due to the yeast fermentation 

which converts starch into ethanol, the starch concentration of DDGS (5%) is significantly lower than that 

of corn (63.4%), and other compositions become relatively high, including protein is concentrated about 

3.6 times; fat, 3.4 times; ash, 3.3 times; and fibers, 2.9 times (Liu, 2009). 

Ethanol producers often add hydrolyzing enzymes during fermentation to improve ethanol yield, and 

these enzymes function on hydrolyzing non-fermentable matters, including protein and cell wall 

components, to make starch more available and enhance yeast efficiency. Most of the non-fermentable 

matters in corn finally go into the DDGS after the processing, and effects of enzyme hydrolysis on DDGS 

quality are not clear. 

 



www.manaraa.com

9 

 

3.2 DDGS digestibility  

The concentration of gross energy in DDGS is greater than in corn. The average gross energy in 10 

samples of DDGS was measured by Pedersen et al. (2006), which was 5434 kcal per kg dry matter. This 

value is greater than that in corn (4496 kcal per kg dry matter). However, the digestibility of energy in 

DDGS is lower than that in corn, which makes DDGS having similar digestible and metabolizable energy 

to corn. The low digestibility of energy in DDGS is the result of the high fiber content and low fiber 

digestibility (Stein, 2006). DDGS is a diet with high fiber content. For mono-gastric animals, the major 

concern for high fiber diet is the association between high fiber content and decreased nutrient utilization 

and low net energy values (Noblet and Le Goff, 2001). Dietary fiber is edible but resistant to digestion 

and absorption in the gastrointestinal tract of mammalians. Moreover, these carbohydrates are not only in-

digestible to gastrointestinal tract enzymes, but they also reduce digestibility of nutrients, such as crude 

protein, lipid, and starch (Gutierrez et al., 2014; Zhang et al., 2013). 

Non-starch polysaccharides (NSPs) hydrolyzing enzymes, including glucanase, cellulases, 

hemicellulases and pectinase, have been successfully used in mono-gastric diets to degrade certain cereal 

components in order to improve the nutritional value of feed. The presence of high levels of NSPs results 

in poor feed conversion rate, slow weight gain, and sticky droppings by yound animals. Addition of 

enzyme during feed production was found to markedly improve the digestion and absorpion of feed 

components as well as weight gain (Cowan, 1996; Hesselman et al., 1982; Rexen, 1981; Walsh et al., 

1993). Omogbenigun et al. (2004) supplemented an enzyme cocktail (cellulase, galactanase, mannase, and 

pectinase) to a wheat-based diet fed in 6 kg pigs and observed an improvement in growth rate and feed 

efficiency. Kim et al. (2003) utilized a carbohydrase enzyme mixture (α-1,6-galactosidase and β-1,4 

mannanase) in corn-soybean meal based diets fed to nursery pigs and reported an improvement in feed 

efficiency in two trials. Enzyme treatment on DDGS was only reported by Vries et al. (2013), who 
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confirmed the function of cell wall degrading enzyme on DDGS when the DDGS was treated directly by 

the enzyme. They observed improved protein digestibility of DDGS in an in vitro model of pig. 

Furthermore, cell wall degrading enzymes have potential use in dry-grind ethanol process. In a U.S. 

patent, Abbas and Bao (2016) have proposed to use cellulolytic enzyme in dry-grind ethanol process for 

high ethanol yield. Using cell wall degrading enzymes during fermentation might be able to produce easy-

to-digest DDGS and lead to high ethanol yield. 

Moreover, acid-stable protease is widely used in dry-grind ethanol plants and commercially available 

on the market, such as FermgenTM and others which described in the previous paragraph. However, no 

research has been done on the effects of proteolysis during fermentation on the properties of DDGS. Due 

to the low margin of ethanol, revenue of DDGS becomes more important than before. Ethanol producers, 

who understand the effects of processing methods on the DDGS characteristics, could have more 

advantages on quality control and pricing to this co-product. 

4 Objectives 

Therefore, the objectives of this research are 1) to investigate the effects of surfactant based chemical 

aids on DCO recovery from CCDS, 2) to design new methods, including using surfactant and enzyme, for 

improving oil partition in thin stillage and oil recovery from CCDS, and 3) to identify the effects of 

enzyme hydrolysis during fermentation on DDGS characteristics. 
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Abstract: 

Most of the oil in condensed corn distillers solubles (CCDS) is in an emulsified form and centrifugation 

alone is not sufficient to recover the oil in high yield. The synergistic effect between non-ionic surfactants 

(Tween® 80 and Span® 80) and silica nanoparticles (hydrophilic and hydrophobic) on oil recovery was 

investigated using 3 batches of commercial CCDS. The use of surfactant mixture with Hydrophilic-

Lipophilic-Balance (HLB) value of 9.7 led to the highest oil recovery. Tween® 80/silica and surfactant 

mixture (HLB 9.7)/silica recovered 5 ~ 10 % more oil compared with the control groups. However, 

Span® 80/silica was not effective. Surfactant mixture/silica made the oil recovery by centrifugation more 

efficient by destabilizing oil-in-water emulsion and washing out free oil droplets. The distribution of 

different types of oil was significantly affected by centrifugation conditions, heating, shaking, and 

surfactant and silica addition. About 20% of total oil remained in the unbroken cells or germ pieces in 

CCDS, which is unrecoverable without additional treatment.  

 

Keywords: Condensed corn distillers solubles (CCDS), oil distribution, oil recovery, silica nanoparticle, 

Span® 80, synergistic effect, Tween® 80. 

 

Highlights: 

 The use of Tween® 80/Span® 80 mixture  led to highest oil recovery at ratio 1:1, w:w; 

 Synergistic effect between surfactant and silica nanoparticles was demonstrated; 

 CCDS properties contributed to the oil recovery performance; 

 Processing treatments, including centrifuge, heating, shaking and demulsifier addition, significantly 

affected distribution of different types of oil in CCDS. 
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 1 Introduction 

Condensed corn distiller solubles (CCDS) is produced by evaporating thin stillage in the dry-grind 

corn ethanol fermentation process. It typically contains 65% moisture, 14% protein and 20% oil on a dry 

weight basis (Majoni et al., 2011). The oil recovery from corn fermentation has seen an impressive growth 

in recent years due to the thriving ethanol process and the need from biofuel industry to increase revenue. 

Distillers corn oil usage had 62% growth for biodiesel in 2013 and 105% growth in 2012 compared to the 

previous years (Scott et al., 2014).  

Dried distillers grain with solubles (DDGS) is used as animal feed which is a dried blend of CCDS 

and wet cake from decanting operation. However, it has been reported that the high residual oil in DDGS 

may interfere with milk production in dairy cattle and lead to undesirably soft pork belly in swine (Wang 

et al., 2009). In this case, recovery of the oil from CCDS is desirable for dry-grind fermentation industry 

to make a low fat content DDGS. The recovered oil can be either adding back to DDGS for animal having 

specific energy requirement or making biofuel. That will make the dry-grind fermentation product more 

flexible to be used and more profitable for the producers.   

CCDS is a viscous mixture which contains protein, lipid, fine fiber and residual starch (Kim et al, 

2007). There are four possible forms of oil in the CCDS based on preliminary study and understanding 

(Majoni et al., 2011): (1) protein and phospholipid stabilized oil-in-water emulsion, (2) small oil droplets 

that are bound to hydrophobic particles or surface, (3) oil bodies in the unbroken corn particles, and (4) oil 

bodies released from broken cells. Centrifugation is a common means to separate oil from CCDS in corn 

fermentation industry (Moreau et al., 2012), but the complex interaction of oil with other components 

makes this method inefficient in recovering the total oil. Thus, several types of chemical demulsifying 

aids are currently used in corn-based ethanol plants. Chemical aid is easy to use and relatively effective in 

improving oil recovery from CCDS. A number of demulsifiers have been designed for oil recovery from 
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corn stillages, including FoodPro SA9843 corn oil yield improver (General Electric, Trevose, PA, USA), 

PTV M-5309 corn oil extraction aid (Ashland Chemical, Covington, KY, USA), Ashland DPI-428 

(Ashland Hercules Water Technologies, Wilmington, DE, USA), and Hydri-Maize Demulsifier 300 

(Hydrite Chemical Co., Waterloo, IA, USA). Such additives include alcohol-based compounds (Gallop et 

al., 2012), polymeric materials (Scheimann et al., 2009), and surfactants (Sheppard et al., 2012). Addition 

of solid particles as an optional aid was mentioned in an US patent 20120245370 (Sheppard et al., 2012). 

However, detailed composition of commercial demulsifier packages and mechanism of action are lacking. 

Solid particles can be used as a demulsifying agent, but it has a different mechanism of action than 

that of surfactants. Theoretically, the solid particles can be partially wetted by both phases in an emulsion 

and the preferred emulsion type is determined by the wet preference for hydrophilic or hydrophobic phase 

(Binks, 2002). The contact angle of the solid particle on emulsion interface is equivalent to HLB value of 

surfactant. Different from surfactants, which stabilize emulsions by reducing the oil-water interfacial 

tension, the solid particles affect the stability by providing a steric barrier at the interface and changing the 

rheological properties of the emulsions and interfaces (Binks, 2002). The use of mixtures of surfactants 

and particles for demulsification has attracted attention for possible synergistic interactions (Nesterenko et 

al., 2014). By adsorbing onto solid surface, surfactant molecules can transform a hydrophilic surface to a 

hydrophobic one and vice versa, or a charged surface to an uncharged one (Kwok et al., 1993). 

Studies examining the interactive effect of surfactants and particles on emulsion stability in food and 

petroleum applications have been reported (Binks and Rodrigues, 2007; Tambe and Sharma, 1993; 

Drelich et al., 2010). However, no research has been seen to investigate the interactive behavior between 

surfactants and solid particles when they are blended together as an enhanced demulsifier, and the 

demulsification behaviors of this mixture has not been systematically studied yet. 
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The objectives of this research were to understand the synergistic effect between surfactants 

(Tween® 80 and Span® 80) and silica nanoparticle (hydrophilic and hydrophobic) on corn oil recovery 

from CCDS, and to investigate the distribution of different types of oil in CCDS as affected by oil 

recovery treatments. 

2 Materials and Methods 

2.1 Condensed Corn Distillers Solubles (CCDS) 

Three batches of CCDS were obtained from LincolnWay Energy (Nevada, IA) at three different times 

within a year, and they were stored in a walk-in refrigerator at 4°C and used as quickly as we could. 

Small amount of sodium azide was added to prevent mold and bacteria growth. These three batches of 

CCDS contains 65-73% moisture, 15-22% fat and 18-22% protein (dry weight basis).  

2.2 Chemicals and Other Materials 

A hydrophilic non-porous silica nanoparticle, 6808NM, and a hydrophobic silica nanoparticle, 

6864HN were purchased from SkySpring Nanomaterials Inc (Houston, TX, USA). The hydrophilic 

nanoparticle 6808NM has 20 nm particles size and unmodified natural surface. The hydrophobic silica 

nanoparticles 6864 HN has 10-20 nm particle size and has chemically treated super-hydrophobic surface. 

Hexanes, Span® 80 (sorbitan monooleate), Tween® 80 (polysorbate 80), hydrochloride acid, sucrose, 

sodium chloride and 100% pure cotton cheesecloth were purchased from Fisher Scientific (Fairlawn, NJ, 

USA). 

2.3 CCDS characterization 

Total oil content, solid content and particle size distribution were measured for the 3 batches of 

CCDS. Total oil content was determined by acid hydrolysis method (AOAC, 1992), and it was used as the 

base to calculate oil recovery. Solid content was determined by weight difference after oven-drying at 

105°C for 5 h. The particle size distribution profiles of the 3 batches CCDS were determined by using a 
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Mastersizer-2000 particle size analyzer (Malvern Instruments Ltd, Worcestershire, UK) with a wet 

module (Hydro 2000). The CCDS sample was diluted with DI water to an obscuration range of 11-14% as 

recommended by the manufacturer. 

2.4 Effect of surfactant HLB on oil recovery from CCDS 

Surfactants with different HLB values were obtained by mixing Span® 80 and Tween® 80 at 

following ratios by weight: Span® 80 to Tween® 80 ratio of 1:0, 4:1, 2:1, 1:1, 1:2, 1:4, and 0:1. The HLB 

value of the blend was calculated by using the following equation: 

HLBa × Ra + HLBb × Rb = HLBt (ICI American, 1984), 

Where “a” is surfactant a; “b” is surfactant b; R is ratio by weight of surfactant a or surfactant b; and t is 

combined surfactant mixture.  

The HLB values of resulting surfactant mixtures are shown in Table 1. Surfactant mixture of 0.04 g 

was mixed with 40 g of CCDS (equivalent to 1000 ppm) in a 250-mL centrifuge bottle. This application 

level was chosen based on the suggested dosage of commercial demulsifiers at 500-1500 ppm in CCDS. 

All samples were placed in a shaking water bath (Model R-76, New Brunswick Scientific Co. Inc., NJ, 

USA) at 80-85°C for 10 min with 100 rpm shaking speed. Immediately following heating and shaking 

treatment, oil separation was completed by using a Centra MP4 centrifuge (International Equipment 

Company, Needham Heights, MA, USA) at 3000 xg for 10 min. The top free oil was transferred by 

washing the top surface of liquid with hexane (5 times of washing of top layer using 20, 20, 10, 10, 5 mL 

hexanes at each time). Removal of solvent was completed using an air stream at 90°C. Residual solvent 

was removed by using an isotemp oven (Fisher scientific, Fairlawn, NJ, USA) at 110°C for 1.5 h. The 

weight of the oil was determined gravimetrically. Two replicates were applied for each of the three 

batches of CCDS. 
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2.5 Synergistic effect between surfactants and silica nanoparticles on oil recovery from CCDS 

Surfactants, including Tween® 80, Span® 80 and Tween® 80/Span® 80 mixture at 1:1 ratio (M), 

were mixed with hydrophilic silica nanoparticles, or hydrophobic silica nanoparticles at 2.5, 5, 7.5, 10, 

12.5% w/w of silica concentration in surfactant. The nanoparticles were dispersed in surfactant by using 

sonication at 30% power (Misonix Sonicator 3000, Farmingdale, NY) for 15 min and followed by mixing 

with magnetic stirrer overnight. Then, 0.04 g mixture of silica and surfactant was added into 40 g CCDS 

in 250-mL centrifuge bottle to give 1000 ppm concentration. All samples were placed in a shaking water 

bath, at 80-85°C for 10 min with 100 rpm shaking speed. The oil separation procedure was the same as 

section 2.4. 

2.6 Effects of treatments on distribution of different types of oil in CCDS 

The CCDS samples were treated by different treatments (Table 2), including different centrifuge 

force (3000 xg and 4000 xg), heating (85°C) and shaking (100 rpm), and demulsifier (Tween® 80/Span® 

80 mixture at 1:1 ratio with 2.5% hydrophilic silica). The effects of these treatments on the distribution of 

different types of oil in CCDS were evaluated with the following method.  

The method for separating different types of oil in CCDS was adapted based on Kapchie and others’ 

work (Kapchie et al., 2008). CCDS of 10 g was mixed with 7 mL NaCl-sucrose solution (1M NaCl and 

0.8M sucrose) in a 50-mL centrifuge tube. The mixture was shaken gently by hand for 15 s and was 

centrifuged at 4000 xg for 30 min to separate the different types of oil as illustrated in Figure 1. Four 

layers were formed after centrifugation, including free oil, oil body, oil-in-water emulsion and solid 

residue, and the free oil in this section was the same with “total oil recovery” in other sections. The top 

free oil was removed by hexane washing (4 times with 5 mL for each time). Following hexane washing, 

the oil body (fat pad) and oil-in-water emulsion was filtered by using 4 layers cheesecloth. The residue on 

cheesecloth was oil body which was transferred into a 250-mL Erlenmeyer flask together with one layer 
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of cheesecloth. The liquid fraction was oil-in-water emulsion and remained in a 250-mL Erlenmeyer 

flask. The solid residue in centrifuge tube was transferred into a 250-mL Erlenmeyer flask with water. 

The total oil content in oil body, oil-in-water emulsion and solid residue were determined by the acid 

hydrolysis procedure (AOAC, 1992). The amount of oil in free oil layer was measured gravimetrically 

after removing solvent. 

2.7 Statistical Analysis 

Significant differences among treatments were tested by using the statistical analysis software IBM 

SPSS statistics 19 (Armonk, NC, USA) and One-way analysis of variance (ANOVA). The Least 

significant differences (LSD) were calculated at P = 0.05. 

 

3 Results and Discussion 

3.1 CCDS characteristics 

For the different batches of CCDS, solid content ranged from 27 to 30%, total oil contents ranged 

from 17 to 24% on dry weight basis as shown in Table 3. Particle size distributions of the 3 batches CCDS 

are shown in Table 5. The third batch of CCDS had significantly smaller particle size and more particles 

distributed under small particle size than the first and second batches of CCDS. The second batch CCDS 

had no significant difference from the first batch CCDS. However, a numerically smaller particle size of 

second batch CCDS was found comparing with that of the first batch. 

3.2 Effect of CCDS characteristics on oil recovery 

No relationship was found between total oil content and oil recovery in these three batches of CCDS 

(Table 3). The third batch of CCDS had the lowest oil content but the highest oil recovery. The first batch 

had similar total oil content but significantly lower oil recovery compared to the second batch. 
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However, oil recovery may relate to the average particle size and particle size distribution in CCDS. 

The first batch of CCDS had a larger average particle size and followed by the second batch of CCDS, 

and the third batch of CCDS had the smallest particle size. Unlike the demonstrated effect of corn meal 

particle size on corn fermentation and oil recovery, for which the smaller meal size did not help oil 

recovery from fermentation beer (Wang et al., 2009), the smaller particle size of the CCDS related to 

higher amount of oil recovered. Part of corn oil and oil body in CCDS was trapped in unbroken germ 

cells, and attached to broken cell wall or corn protein complex (Majoni et al., 2011). When the particle 

size was reduced, the size of these complexes may have been reduced and released the trapped oil. 

3.3 Effect of surfactant HLB on oil recovery from CCDS 

The optimal HLB value for demulsifying CCDS was investigated. Non-ionic surfactants, Tween® 80 

and Span® 80 used in various ratios gave a set of different HLB values of the resulting surfactant 

mixtures. The HLB value had significant effect on oil recovery from CCDS as shown in Figure 2. In first 

batch of CCDS, the oil recovery was increased when the HLB value was increased from 4.3 to 9.7 and 

decreased when HLB was higher than 9.7. A similar trend was found in the second batch of CCDS but not 

in the third batch. The third batch of CCDS had significantly higher oil recovery (72%) than the first 

(55%) and the second (65%) batches of CCDS when no surfactant was added, which may weaken the 

effect of surfactant due to less extra recoverable oil in CCDS. Rondon et al (2006) reported an observation 

in a demulsifying water-in-oil emulsion study, and indicated that the optimum demulsifier formulation 

was the surfactant mixture having the same affinity for both hydrophilic and hydrophobic phases. Our 

HLB of 9.7 being the best agreed with this observation. 

The HLB value is an empirical scale which intends to describe the balance of the hydrophilic and 

lipophilic groups of a surfactant (Rondon et al., 2006). Based on emulsifier’s performances in making 

emulsion, it is widely accepted that HLB < 8 indicates a hydrophobic compound that results in a water-in-
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oil emulsion. On the other hand, if a surfactant’s HLB is greater than 12, it is a hydrophilic surfactant and 

will best form an oil-in-water emulsion. Moreover, a systematic research by Boyd et al (1972) indicated 

that there is a minimum HLB for stability of oil-in-water emulsions, which is about 10. In our system, 

protein is the major stabilizer for oil-in-water emulsion in corn fermentation co-product, CCDS. 

Surfactant is very surface active and can replace a portion of protein on the emulsion interface (Wilde et 

al., 2004). However, surfactant with HLB 9.7 is not a good emulsion stabilizer, instead, it breaks the 

emulsion and release the oil after replacing a portion of protein on the emulsion interface. The finding 

from this optimization experiment provides new information to the industry in modifying their current use 

of Tween® 80 demulsifier, i.e., to make it more hydrophobic for achieving the best oil recovery.  

3.4 Synergistic effect between surfactant and silica nanoparticle on oil recovery from CCDS 

Commercial demulsifying agents may contain hydrophobic solid particles, such as hydrophobic silica 

and wax particles, probably due to the synergistic effect between them (Sheppard et al., 2012). However, 

no evidence has been shown that hydrophilic silica cannot work when mixed with surfactant. Therefore, 

we conducted a systematic study to investigate the interaction between surfactant and silica nanoparticles 

for their effect on oil extraction. 

As shown in Figure 3, Tween® 80 had significantly synergistic effect with both hydrophilic and 

hydrophobic silica in oil recovery. However, this effect was influenced by CCDS characteristics. The oil 

recovery was significantly improved when Tween® 80 and silica (of both hydrophilic and hydrophobic) 

mixture was added in the first and the second batch of CCDS. No effects of silica concentrations were 

found when Tween® 80 mixed with hydrophilic or hydrophobic silica was used for the third batch CCDS. 

Due to the high oil recovery in the control of the third batch of CCDS, only a numerical but not significant 

increase was found.  
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No significant synergistic effect was found between Span® 80 with either hydrophilic or hydrophobic 

silica as shown in Figure 4, except for Span® 80 and hydrophobic silica in first batch CCDS, which had 

significant improvement only when >7.5% silica concentrations were used. Nonetheless, Span® 80 was 

not as effective as Tween® 80 at the same conditions. 

Synergistic effect was found in both surfactant mixture (1:1)/ hydrophilic silica and surfactant 

mixture (1:1)/ hydrophobic silica as shown in Figure 5. Addition of surfactant mixture can significantly 

improve oil recovery compared to the control group, except for the third batch. The consistent (low 

standard deviation) and significant increases were observed in most of CCDS samples when hydrophilic 

silica or hydrophobic silica were added comparing with surfactant alone. However, increasing silica 

concentration in surfactant did not help in recovering more oil. 

The mechanism of surfactant destabilizing the protein-stabilized emulsion is reported in literatures. 

Protein forms a viscoelastic layer which can influence the stability of emulsions (Murray and Dickinson, 

1996). A higher concentration of protein on the interfacial surface contributes to a stronger interaction 

among protein molecules and this interaction affects the stability of protein stabilized emulsion (Mackie et 

al., 1999). Low-molecular weight surfactants are often more surface-active than proteins and will, 

therefore, compete for a position on interfacial surface with protein (Wilde et al., 2004). CCDS contains 

14-18% protein and these proteins stabilize the interface of oil-in-water emulsion in CCDS (Majoni et al., 

2011). When surfactants are added in CCDS, they compete with protein on the oil-in-water interfaces and 

partially replace the protein and break the protein-protein interaction to release oil from the emulsion. 

Span® 80 and its mixture with silica did not work as well as the other surfactant and combinations 

did. The type of interaction between Span® 80 and protein on the emulsion interface may play an 

important role. Cornec et al. (1996) reported that β-lactoglobulin had less possibility to be replaced by 

Span® 80 on emulsion interface compared with β-casein, which is more hydrophilic than β-lactoglobulin. 
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Moreover, protein on interface was easier to be displaced by surfactant with large hydrophilic head group, 

such as Tween 20 (Cornec et al., 1996). Corn zein protein is a hydrophobic protein (Argos et al., 1982), 

and it comprises 45-50% of the protein in corn (Shukla and Cheryan, 2001). Span® 80 may tend to adsorb 

on the hydrophobic zein protein but not replace it. More hydrophilic surfactant is needed to replace 

hydrophobic proteins more efficiently as discussed by Cornec et al. (1996).  

Silica nanoparticle addition significantly improved oil recovery comparing with Tween® 80 and 

surfactant mixture alone. That may be attributed to the similar function of hydrophobic oil and solid 

particle in anti-foaming action. In an anti-foaming research, Koczo et al. (1994) suggested that solid 

particle or hydrophobic oil alone has much lower penetration ability on emulsion interface than a mixture 

of these two. Denkov (1999) also suggested an “oil bridge model” to explain the hydrophobic oil and 

silica combination on anti-foaming. The silica particle can increase the penetration depth of hydrophobic 

oil in the lenses and the formed oil bridge is unstable which makes the foam break. Foam is air-in-water 

system which is very similar to oil-in-water emulsion, and the surfactant/silica combination may play a 

similar role in breaking oil-in-water emulsion. With the presence of silica nanoparticle, surfactant may 

penetrate the interface and replacing protein more efficiently. When the surfactant replaces the position of 

a protein on the interface, a “surfactant bridge” which is similar to “oil bridge” in anti-foaming may be 

formed. This surfactant bridge with the particles imbedded in is unstable which would break the emulsion.  

However, results from this study seemingly will not explain why the same surfactant mixture had 

synergistic effect with both hydrophobic and hydrophilic silica, and thus led to similar oil recovery 

improvements when used in CCDS. Our speculation is that since the surfactant mixture is 1:1 ratio of the 

highly hydrophobic and highly hydrophilic compounds, such a mixture would work well with either 

hydrophobic or hydrophilic particles. The interactions would be similar, only that an opposite orientation 
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or arrangement of molecules or particles on the interface would occur. Further study is needed to explain 

this phenomenon. 

It’s worth mentioning that we also tested our Tween® 80 combined with 5% hydrophilic silica 

nanoparticles in comparison to one of the commercial products, a demulsifier package (the name cannot 

be revealed) mentioned in the introduction section. Both of the agents were used in 1000 ppm 

concentration in CCDS. The oil recovery from these two treatments are statistically the same, and they 

were much higher than the two controls, which were CCDS alone and with Tween® 80 addition alone. 

3.5 Effects of treatments on distribution of different types of oil in CCDS 

Results presented in above sections and that obtained during preliminary experiments indicated that 

oil in CCDS cannot be recovered fully, i.e., 100%. Depending on the batch of CCDS, about 25- 35% of 

total oil was not extracted. Therefore, we wanted to investigate the forms of oil present in CCDS and how 

our treatments affect the distribution of various forms of oil. 

The three batches of CCDS had significantly different amount of free oil and oil-body distribution, 

but they had similar oil-in-water emulsion and oil-in-solid distribution when they were treated at same 

condition without the use of surfactant and silica, as shown in Figure 6. The third batch of CCDS had the 

highest free oil content and lowest oil body content, and the first batch of CCDS had the lowest free oil 

content and highest oil body content. This result paralleled with oil recovery in control groups of three 

batches of CCDS, which had the highest oil recovery in the third batch and the lowest in the first batch. 

Moreover, particle size distribution may also relate to the free oil and oil body proportion change among 

batches of CCDS.  

Different treatments, including temperature, shaking, surfactant and silica addition and centrifugation 

condition, had significant effect on oil distribution in CCDS as shown in Figure 6. The first and second 

batch of CCDS were chosen for this experiment due to its appropriate oil body and free oil content. When 
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there was no heating and shaking and surfactant and silica applied, increasing centrifuge condition from 

3000 xg, 10 min to 4000 xg, 30 min significantly improved free oil recovery and decreased oil-in-water 

emulsion, but no significant difference was found in oil body and oil in solid content. When 83°C 

heating with 100 rpm shaking for 10 min was applied before 3000 xg and 10 min centrifugation, free oil 

content was significantly improved, and other three types of oil contents were significantly decreased 

comparing with 3000 xg and 10 min centrifugation alone. This indicates heating is very effective in 

breaking the emulsion and oil body. When surfactant mixture (1:1, w: w, HLB 9.7) was added during 

heating and shaking, the free oil recovery was significantly increased again and oil content in emulsion 

and solid were further decreased. This indicates surfactant and silica is effective in improving free oil 

recovery.  

Higher centrifugation force and longer centrifugation time can break the oil-in-water emulsion in 

CCDS at room temperature, but they can’t affect oil body stability due to the special structure of oil body 

which is stabilized by phospholipid layer and protein (Iwanaga et al., 2007). However, the oil body in 

CCDS became extremely unstable after heating and shaking treatment. The treatment conditions for 

CCDS in ethanol plants, including 80~85°C temperature, pump transferring, blending and centrifugation 

of CCDS, may be already sufficient for breaking oil body. It is non-necessary to add any extra additives 

or steps in current dry-grind corn ethanol fermentation procedure for breaking oil body. Surfactant and 

silica mixture addition further improved oil recovery by breaking residual emulsion and washing out 

small oil droplets which are attached on the surface of cell debris. Moreover, we found there was still 25~ 

35% corn oil in CCDS that cannot be recovered in this work, and this part of oil may be trapped in a 

protein and unbroken cell complex which was not accessible to the surfactant and silica particles. Further 

study should be conducted to focus on this part of trapped oil in corn fermentation.  
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It should be noted that the free oil recovery of 70.4% from treatments 3000 xg centrifugation plus 

heating and shaking, and that of 75.1% from 3000 xg centrifugation plus heating and shaking, and 

surfactant and silica use, were higher than oil recovery from same treatments in synergistic study of this 

report. This may be caused by the effect of storage on CCDS stability. The heterogeneous CCDS is a 

dynamic system, and precaution has to be made to prevent system destabilization. In our study, a 

complete set of treatments was applied to the same CCDS, so that proper conclusion on treatment effect 

can be drawn. 

4 Conclusion 

The optimal HLB value for demulsifying CCDS was about 9.7. Tween® 80 and surfactant mixture 

(HLB of 9.7) had synergistic effect with both hydrophilic and hydrophobic silica nanoparticles, and they 

significantly improved oil recovery. However, Span® 80 did not show these effects. Different treatments, 

including heating and shaking, surfactant and silica addition and centrifugation condition, had significant 

effect on distribution of different types of oil in CCDS. Comparing with conventional centrifugation 

method to recover oil, the use of surfactant and silica particle combination led to 5~10% more extracted 

oil depending on CCDS conditions. Although the synergistic effect between surfactant and silica 

nanoparticle was investigated for oil recovery from CCDS, this technology will have potential to be 

applied to other systems where there is a need to break oil-in-water or water-in-oil emulsions.  
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Tables and Figures 

Table 1. HLB values of surfactant mixtures used in this study 

Surfactants (w: w) HLB value 

Span® 80, 100% 4.3 

Span® 80: Tween® 80 (4:1) 6.4 

Span® 80: Tween® 80 (2:1) 7.8 

Span® 80: Tween® 80 (1:1) 9.7 

Span® 80: Tween® 80 (1:2) 11.3 

Span® 80: Tween® 80 (1:4) 12.9 

Tween® 80, 100% 15.0 

HLB values of Span® 80 and Tween® 80 were provided by producer; HLB value of surfactant mixtures 

were calculated by the equation in Section 2.4. 

 

 

 

Table 2. Conditions used to study effects of processing on distribution CCDS oil  

Treatment Heating and shaking Demulsifier Centrifugation condition 

4000 xg No No 4000 xg, 30 min 

3000 xg No No 3000 xg, 10 min 

3000 xg+ HS Yes No 3000 xg, 10 min 

3000 xg + HS + D Yes Yes 3000 xg, 10 min 

HS: Heating and Shaking; D: Mixture of Span 80 and Tween 80 at ratio by weight 1:1, with 2.5% 

hydrophilic silica addition 
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Table 3. CCDS characteristics and oil recovery 

CCDS  Total solid 

content 

Total oil 

content (dry 

weight 

basis)  

Particle size distribution Oil 

recovery 
D(0.1) D(0.5) D(0.9) Volume 

weighed 

mean 

1st batch 28.38 ± 

0.97 A 

22.06 ± 

0.88 A 4.28 ± 

0.05 

B 

22.26 

± 0.65 

AB 

420.97 

± 

38.45 

A 

119.07 

± 8.16 

A 

56.27 ± 

1.40 C 

2nd batch 26.88 ± 

0.38 B 

23.51 ± 

0.63 A 4.20 ± 

0.04 

C 

23.19 

± 0.74 

A 

388.41 

± 

39.73 

A 

114.03 

± 8.47 

A 

66.17 ± 

3.04 B 

3rd batch 29.51 ± 

0.87 A 

17.38 ± 

0.25 B 4.72 ± 

0.06 

A 

21.55 

± 0.63 

B 

296.12 

± 

50.13 

B 

92.95 ± 

8.94 B 

73.12 ± 

0.71 A 

Data sharing the same letter in the same column did not have significant difference (P>0.05). D (0.1) is 

the diameter where 10% of the distribution is below; D (0.5) is the diameter where 50% of the distribution 

is below; D (0.9) is the diameter where 90% of the distribution is below. Oil recovery data in this table 

was collected from no surfactant and silica added group. 
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Figure 1. Separation of different types of oil after centrifugation 

 

 

 

 
Figure 2. Effect of surfactant HLB value on oil recovery from the 3 batches of CCDS. Data sharing the 

same letter in the same batch of CCDS did not have significant difference (P> 0.05). 
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Figure 3. Synergistic effect of Tween® 80/ hydrophilic silica (upper chart) and Tween® 80/hydrophobic 

silica (lower chart) on oil recovery from the 3 batches of CCDS. T is Tween® 80 alone. Data sharing the 

same letter in the same batch of CCDS did not have significant difference (P> 0.05). 
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Figure 4. Synergistic effect of Span® 80/ hydrophilic silica (upper chart) and Span® 80/ hydrophobic 

silica (lower chart) on oil recovery from 3 batches of CCDS. S is Span® 80 alone. Data sharing the same 

letter in the same batch of CCDS did not have significant difference (P> 0.05). 
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Figure 5. Synergistic effect between surfactant mixture (HLB 9.7)/ hydrophilic silica (upper chart) and 

surfactant mixture (HLB 9.7)/ hydrophobic silica (lower chart) on oil recovery from 3 batches of CCDS. 

M is surfactant mixture (HLB 9.7) alone. Data sharing the same letter in the same batch of CCDS did not 

have significant difference (P> 0.05). 
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Figure 6. Oil distributions in the 3 batches of CCDS after 4000 xg, 30 min centrifugation (upper chart) 

and effect of treatments on distribution of difference types of oil in first (middle chart) and second batch 

(bottom chart) of CCDS. 4000 xg is centrifugation at 4000 xg for 30 min; 3000 xg is centrifugation at 

3000 xg for 10 min; HS is heating and shaking; SS is Tween® 80/Span® 80 mixture at 1:1 ratio with 

2.5% hydrophilic silica . Data sharing the same letter in the same oil type did not have significant 

difference (P>0.05).  
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CHAPTER 3. USE OF SURFACTANT AND HYDROLYZING ENZYMES IN DRY-GRIND 

CORN PROCESSING IMPROVES ETHANOL YIELD AND DISTILLERS CORN OIL 

RECOVERY 
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Abstract: 

Distillers corn oil (DCO) is a valuable co-product of dry-grind corn ethanol process and can be used in 

animal feed and for bio-fuel production. DCO can be in different forms in the fermentation matrix, 

including oil adhering to solid surfaces such as cell wall and protein matrix and oil contained in unbroken 

cells, which was difficult to partition to thin stillage by decanting. Effects of using surfactant (Tween® 

80) and hydrolyzing enzymes during fermentation on DCO partition after decanting and DCO recovery 

from condensed corn distillers with solubles (CCDS) were investigated. There was about 8~10% DCO 

adhered to wet cake solids in whole stillage produced by conventional procedure, and this part of DCO 

partitioned to thin stillage when 500 ppm of Tween® 80 was added in corn slurry. Enzymes reduced the 

particle size of wet cake and released more DCO from wet cake to thin stillage. However, the use of 

protease reduced oil recovery (4.0% versus 7.9% and 17.9%, protease versus control and non-starch 

polysaccharides hydrolyzing enzymes) by producing partially hydrolyzed protein, which may have 

worked as emulsifier. Moreover, a synergistic effect between the use of enzymes and Tween® 80 was 

found on DCO partition in thin stillage and recovery from CCDS. 

 

Keywords: dry-grind ethanol process, distillers corn oil (DCO), ethanol, oil partition, oil recovery, 

Tween® 80, hydrolyzing enzyme. 
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Highlights: 

 The use of Tween® 80 at the concentration of 500 ppm in corn slurry led to highest oil partition in 

thin stillage; 

 The use of hydrolyzing enzymes during fermentation tended to move more oil from wet cake to thin 

stillage; 

 The synergistic effect between surfactant and hydrolyzing enzyme on oil recovery from CCDS was 

demonstrated; 

 The use of Tween® 80 had no negative effect on ethanol production. 
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 1 Introduction  

Dry-grind ethanol industry has become the second largest corn user in the United States, producing 

90% of the ethanol in U.S. in 2015. This industry was very profitable in the past. However, due to the 

sharp decline in crude oil price, the price of dry-grind corn ethanol fell sharply from $2.18 per gallon in 

December 2014 to $1.25 per gallon in February 2015 (Irwin and Good, 2015; Wisner, 2015). The 

additional revenue streams from co-products of the dry-grind ethanol process are becoming more 

important. One such co-product is the distillers corn oil (DCO), which is the oil recovered from post-

fermentation streams. The revenue from DCO has become more and more important for U.S. ethanol 

plants, particularly in the low margin times (Jayasinghe, 2015).  

The most widely used method for DCO recovery in dry-grind ethanol process is separating the oil 

from the condensed corn distillers solubles (CCDS) by centrifuge (Moreau et al., 2012). The oil recovery 

procedure was described in a U.S. patent 7601858. In brief, after collecting ethanol by distillation (Figure 

1), the ethanol-removed whole stillage is separated by decanting into thin stillage and wet cake. In 

general, 40~60% of total oil in corn whole kernel is left in wet cake and the rest goes to thin stillage after 

decanting. The thin stillage is further evaporated to produce CCDS with 60~85% moisture content, and 

the DCO is extracted from the CCDS by using a disk stack centrifuge (Cantrell and Winsness, 2009). 

Many efforts have been made to improve the DCO recovery from CCDS. Centrifugation coupled with oil 

recovery aid is easy to use and relatively effective in improving oil recovery from the CCDS. A number of 

commercial oil recovery aids have been designed for large-scale process, including FoodPro SA9843 corn 

oil yield improver (General Electric, Trevose, PA, USA), PTV M-5309 corn oil extraction aid (Ashland 

Chemical, Covington, KY, USA), Ashland DPI-428 (Ashland Hercules Water Technologies, Wilmington, 

DE, USA), and Hydri-Maize Demulsifier 300 (Hydrite Chemical Co., Waterloo, IA, USA). However, 
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these products are designed for oil recovery from CCDS only, and do not affect the partitioning of oil 

during decanting and oil from wet cake. 

DCO is present in several different forms during the dry-grind ethanol process, including the oil 

adhering to surface of wet cake solids, like cell wall and protein matrix (Majoni et al., 2011). Based on 

our preliminary experiments, about 8~10% w/w of total corn oil was adhered to solid wet cake particles, 

which did not partition to thin stillage fraction by decanting. The oil adhering to the wet cake surface is 

very similar to the oil stain on a fabric surface of clothes. Surfactants as cleaning agents work by reducing 

the surface tension and removing the oil as micelles. In our previous study on the distribution of different 

types of oil in CCDS, the use of surfactant mix resulted in a higher recovery of oil partially coming from 

surface adhering oil (Fang et al., 2015). This gives the basis for our hypothesis that the cleaning function 

of surfactants could be applied in dry-grind ethanol process to partition the oil from wet cake to the thin 

stillage. 

Surfactants have been applied in aqueous extraction processing to improve vegetable oil recovery. 

Sodium dodecyl sulfate was used to improve recovery of soybean oil (Campbell and Glatz, 2009) and 

canola oil (Tuntiwiwattanapun et al., 2013) by extracting the oil trapped in disrupted cellular matrix. The 

extended-surfactants, which is a recently developed new class of surfactants that works by significantly 

reducing the interfacial tension, extracted 93-95% of total oil from the insufficiently ground peanut and 

canola seeds (Do and Sabatini, 2010). However, due to the safety issue of sodium dodecyl sulfate and 

extended-surfactants, they are not allowed for human or animal consumption. To date, only a few reports 

on destabilization of oil-in-water emulsion by using food-grade-surfactants are available. Fang et al. 

(2015) attempted to improve oil recovery from CCDS by using Tween® 80-Span® 80-silica nanoparticle 

mixture. Zhang and Wang (2016) used Tween® 20 to improve peanut oil recovery. Both works explained 

the improved oil recovery as the result of unstable emulsion formation by surfactant-protein competition 
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on the emulsion interface. Thus, we believed that using surfactant at the beginning of dry-grind ethanol 

process could not only improve oil partition in thin stillage but also increase the oil recovery from CCDS 

by demulsification. 

There is a large portion of oil (40~60% of total oil in corn) remaining in intact cells and 

protein/polysaccharide matrices of wet cake solids; enzyme hydrolysis of the solids might be an efficient 

way to release this part of the oil. Luangthongkam et al. (2015) reported that using a combination of 

cellulolytic enzymes, protease, and phytase during fermentation led to a higher oil partition in thin 

stillage. However, no research has been reported to confirm if hydrolyzing the non-fermentable 

components during fermentation step can improve oil recovery from CCDS. Therefore, the objectives of 

this research were 1) to determine the optimum level and best processing stage to add the surfactant 

(Tween® 80) and 2) to investigate the synergistic effects of surfactant and hydrolyzing enzymes 

(protease, cellulase, and pectinase) on ethanol production and oil recovery. 

2 Materials and Methods 

2.1 Materials 

Ground whole corn meal (average particle size of 0.44 mm), α-amylase (Novozymes, Franklinton, 

NC), glucoamylase (liquid, Spirizyme Excel XHS, Novozymes, Franklinton, NC), dry yeast 

(Saccharomyces cerevisiae; commercial grade currently being used in the ethanol plant) and antibacterial 

chlorine dioxide (commercial grade) were donated by Lincolnway Energy LLC, Ames, IA. Cellulase 

(75,000 CU/g) and pectinase (3500 ENDO-PG/g) were provided by Bio-Cat (Troy, VA). In this study, 

pectinase and cellulase were used as a mix (PC) with ratio 1:1 (w: w). FermgenTM (Acid protease, liquid, 

activity 1,000 SAP units/g) was provided by DuPont Industrial Biosciences (Palo Alto, CA). The other 

chemicals, including Tween® 80 (polysorbate 80), hydrochloride acid, petroleum ether, and ethyl ether 

were purchased from Fisher Scientific (Fairlawn, NJ, USA). 
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2.2 Corn fermentation  

The procedure of lab-scale fermentation is shown in Figure 2. The liquefaction and simultaneous 

saccharification and fermentation of the corn slurry were performed in 250-mL round bottom flasks with 

Tornado IS6 Overhead Stirring System (Radleys Discovery Technologies, Shire Hill, Saffron Walden, 

UK) equipped with an anchored stirring shaft. Ground corn was mixed with cold DI water (or Tween® 80 

water solution) at a 1:2 ratio, w: w.. The total amount of slurry was maintained at 225-230 g. α-Amylase 

(0.15 mL) was added to the slurry and mixed at 81°C for 3h. After that, the flasks were cooled to 30°C in 

an ice bath, and the pH of the cooled slurry was adjusted to 4.0 with 3 M sulfuric acid. Chlorine dioxide 

(0.021 mL), ammonium sulfate (0.065 mL of 0.2 g/g water), gluco-amylase (0.15 mL) and dry yeast (0.15 

g) were added. Fermentation was carried out at 30°C for 64 h with continuous stirring (190 rpm). During 

fermentation, ethanol production was estimated by mass loss according to the following equation (Wang 

et al., 2009). 

Ethanol yield (g 100⁄ g dry corn ) = 100 ×
46×(𝑔 𝑜𝑓 𝑚𝑎𝑠𝑠 𝑙𝑜𝑠𝑠)

44×(𝑔 𝑜𝑓 𝑑𝑟𝑦 𝑐𝑜𝑟𝑛)
                 

Where 46 and 44 are molecular weights of ethanol and CO2, respectively. 

For the experiments of adding hydrolyzing enzymes during fermentation, 0.375 mL of Fermgen or 

0.3 g of PC was added before starting the fermentation. For experiments of adding Tween® 80 in 

fermentation, Tween® 80 water solutions of 200, 300, 400, 500, 600, 700, 800, 1000 ppm were prepared 

and ground corn meal was mixed with Tween® 80 solutions instead of DI water. 

2.3 Post-fermentation processing 

The rotary evaporation (Rotavapor R-210 and Vacuum Pump V-700, Buchi, Switzerland) at 82 °C for 

10 min was used to simulate the industrial distillation step. After the distillation, water was added to make 

up for the weight loss during rotary evaporation, giving the stillage a final solids content of 13% w/w. The 

whole stillage was subjected to decanting following a procedure that simulates the industrial decanting 
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process (Wang et al., 2009) to obtain the thin stillage and wet cake fractions. The wet yields, solid content 

and oil content of thin stillage and wet cake were measured. CCDS was made by condensing thin stillage 

with rotary evaporation at 75°C for 30 min. The solid content of CCDS was adjusted to 28% with water. 

All CCDS samples were stored at 4°C until use. 

2.4 Oil recovery from CCDS 

Oil recovery from CCDS was simulated by using the method of Fang et al. (2015). To compare the 

effect of surfactant addition, 2300 ppm Tween® 80 was added in CCDS before heating and shaking. In 

brief, 40g of CCDS in a 250-mL centrifuge bottle was heated at 80-85°C for 10 min at 100 rpm shaking in 

a shaker water bath (Model R-76, New Brunswick Scientific Co. Inc., NJ, USA). Immediately following 

heating and shaking, oil was separated using a Centra MP4 centrifuge (International Equipment Company, 

Needham Heights, MA, USA) at 3000 xg for 10 min. The oil layer was collected by washing the oil on 

the top layer with hexanes (5 washes with 20, 20, 10, 10, and 5 mL respectively). The solvent was 

removed by evaporation then by vacuum drying. The weight of the oil was determined gravimetrically.  

 

2.5 Surfactant recyclability with backset 

Thin stillage sample was collected from corn fermentation with 500 ppm Tween® 80 as described in 

Section 2.2 and was used as backset to replace part of the incoming water and made the 150 g total 

volume liquid in the new batch of fermentation. Batches of fermentation were performed with corn 

slurries prepared with 100% DI water (Treatment 1), 100% fresh made 500 ppm Tween® 80 (Treatment 

2), 50% fresh made 500 ppm Tween® 80 solution + 50% backset (Treatment 3), and 50% fresh made 

1000 ppm Tween® 80 solution + 50% backset (Treatment 4). The thin stillage decanted from 

fermentation as backset was collected as described in Section 2.3.  

2.6 Analytical methods 
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The adhering oil droplets on wet cake surface were observed using a light microscope (BX40, 

Olympus Corporation, Tokyo, Japan) after staining in Sudan IV ethanol solution. 

The water holding capacity of wet cake was measured to figure out the reason for the low solid 

content in thin stillage resulted by using surfactant. Wet cake samples were dried overnight at 105 °C. The 

water holding capacity (WHC) was analyzed by soaking 250 mg of dried wet cake in 10 mL of water for 

24 h at room temperature. Samples were centrifuged at room temperature at 5000 xg for 20 min, and 

inverted and subsequently drained for 15 min. WHC was calculated as the amount of water retained per 

gram of dry material. 

The solid content was determined by weight difference after oven-drying at 105°C for 5 h. Total oil 

content was determined by acid hydrolysis method (AOAC Official Method 922.06). 

2.7 Calculations 

The calculations of wet yield of thin stillage, solid distribution in thin stillage, oil partition in thin 

stillage, and oil recovery from CCDS are described as below: 

Wet yield of thin stillage, % = 100% ×
𝑔 𝑜𝑓 𝑡ℎ𝑖𝑛 𝑠𝑡𝑖𝑙𝑙𝑎𝑔𝑒

𝑔 𝑜𝑓 𝑤ℎ𝑜𝑙𝑒 𝑠𝑡𝑖𝑙𝑙𝑎𝑔𝑒, 𝑏𝑒𝑓𝑜𝑟𝑒 𝑑𝑒𝑐𝑎𝑛𝑡𝑖𝑛𝑔
 

 

Solid partition in thin stillage, %

= 100% ×
𝑔 𝑜𝑓 𝑑𝑟𝑦 𝑠𝑜𝑙𝑖𝑑𝑠 𝑖𝑛 𝑡ℎ𝑖𝑛 𝑠𝑡𝑖𝑙𝑙𝑎𝑔𝑒

𝑔 𝑜𝑓 𝑑𝑟𝑦 𝑠𝑜𝑙𝑖𝑑𝑠 𝑖𝑛 𝑤ℎ𝑜𝑙𝑒 𝑠𝑡𝑖𝑙𝑙𝑎𝑔𝑒, 𝑏𝑒𝑓𝑜𝑟𝑒 𝑑𝑎𝑐𝑎𝑛𝑡𝑖𝑛𝑔 
 

 

Oil partition in thin stillage, % = 100% ×
𝑔 𝑜𝑓 𝑜𝑖𝑙 𝑖𝑛 𝑡ℎ𝑖𝑛 𝑠𝑡𝑖𝑙𝑙𝑎𝑔𝑒 

𝑔 𝑜𝑓 𝑜𝑖𝑙 𝑖𝑛 𝑤ℎ𝑜𝑙𝑒 𝑠𝑡𝑖𝑙𝑙𝑎𝑔𝑒, 𝑏𝑒𝑓𝑜𝑟𝑒 𝑑𝑒𝑐𝑎𝑛𝑡𝑖𝑛𝑔
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 Oil recovery from CCDS, % = 100% ×
𝑔 𝑜𝑓 𝑓𝑟𝑒𝑒 𝑜𝑖𝑙 

𝑔 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑜𝑖𝑙 𝑖𝑛 𝑡ℎ𝑖𝑐𝑘 𝑠𝑡𝑖𝑙𝑙𝑎𝑔𝑒
 

2.8 Statistical analysis  

All the treatments and analysis were triplicated. The data were analyzed by using SAS (Version 9.4, 

SAS Institute Inc. Cary, NC) to test treatment difference at 95% significant level. 

3 Results and Discussion 

3.1 Oil partition in thin stillage as affected by adding surfactant in corn slurry  

The optimal Tween® 80 concentration for increasing oil partition in thin stillage was investigated. 

The concentration of Tween® 80 in corn slurry had a significant effect on oil partition in thin stillage after 

decanting. As shown in Figure 2, the oil partition in thin stillage was at 40% of total corn oil for surfactant 

concentrations below 300 ppm, but the partition significantly improved to 50% when the Tween® 80 

concentration was increased to 500 ppm. However, no more improvement was seen over 500 ppm. Since 

surfactant cannot release the oil from the unbroken cells, the extra oil partitioned in the thin stillage 

should be coming from the adhered oil on the wet cake surface. This hypothesis is supported by 

microscopic observations in Figure 3, in which Sudan IV stained oil droplets can be seen in wet cake 

surface of the control, but hardly seen in 500 ppm Tween® 80 treated samples. 

The adhering oil on the surface of wet cake is very similar to oily dirt on surface of clothes. 

Surfactant works as detergent to move adhering oil into water during washing. The lipophilic ends of the 

surfactant molecules attach themselves to the oily dirt, and the hydrophilic heads attach to the water. With 

continuous whirling, the oily dirt is pulled away from the surface. In the fermentation tank, Tween® 80 

worked as a detergent, the adhering oil droplets were moved into the aqueous phase from the surface of 

the wet cake with the help of continuous mixing in the process. 
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3.2 Ethanol production rate and yield as affected by using enzyme and surfactant  

There was no adverse effect of adding Tween® 80 in corn slurry on ethanol yield and production rate. 

When only Tween® 80 was added to fermentation (C500), a significant increase in ethanol yield (from 

28.13 in the control to 30.71 g/100 g dry corn in C500) was observed (Table 1). The maximum ethanol 

production rate of C500 was similar with the control, but a higher average ethanol production rate was 

observed (Figure 4). The mechanism behind this finding was not clear. However, similar results were 

reported in studies of cellulosic ethanol production when non-ionic surfactants were added, for the 

purpose of reducing enzyme-substrate interaction (Alkasrawi et al., 2003). They reported that surfactant 

adsorption onto lignin prevented unproductive binding of enzymes to lignin. Park et al. (1992) also 

concluded that surfactants help the enzyme to desorb from the binding site on the substrate surface after 

the completion of saccharification at that site. Though, the dry-grind ethanol process has a different 

circumstance from cellulosic ethanol process, the high fiber content in dry-grind ethanol process might 

have similar side-effects on enzyme activity as by cellulosic matters. In this study, the non-ionic 

surfactant may have the same mechanism to improve saccharification efficiency in dry-grind ethanol 

process. 

When only Fermgen (mainly a protease enzyme) was used during fermentation (Table 1 and Figure 

5), both ethanol production rate and yield increased significantly compared to the control. The increased 

ethanol production rate suggested that fermentation time could be reduced to approximately 40 h from 65 

h. These findings agreed with the results reported in literature in which protease was shown to increase 

ethanol production rate and decrease supplemental N requirements (Johnston and McAloon, 2014). 

Protease enzyme hydrolyzed corn protein and increased the concentration of free amino acid and peptides 

which can be used as N source for yeast. Moreover, protein matrix embeds corn starch in corn endosperm 
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(Watson, 1987) and can be broken by a protease to make starch more available for producing ethanol 

(Lamsal and Johnson, 2012). 

When only the mixture of pectinase and cellulase was added (PC in Table 1 and Figure 6), ethanol 

production rate and final yield were significantly increased compared to the control. However, its effect 

was less significant than using Fermgen. The mechanism of using PC to improve ethanol production rate 

and final yield is different from using protease enzyme. PC hydrolyzed non-starch polysaccharides and 

produced fermentable monosaccharides for yeast. However, products of PC hydrolysis cannot stimulate 

the activity of yeast as the products of protease hydrolysis. 

When both Tween® 80 and PC were used, the ethanol production yield of using PC500 (34.98 g 

ethanol per 100 g dry corn) was not significantly different with PC alone (34.52 g ethanol per 100 g dry 

corn). Similar pattern was observed when Fermgen and Tween® 80 were used, in which using Fermgen 

(35.19 g ethanol per 100 g dry corn) had no significant different compared to F500 (35.25 g ethanol per 

100 g dry corn). Improvement in ethanol yield by using Tween® 80 was not observed when enzymes 

were added during fermentation. As we speculated in the previous section, non-ionic surfactant may 

improve ethanol yield by affecting enzyme-substrate interaction. The enzyme hydrolysis reduces the 

particle size and makes the substrate more available to saccharification enzyme, and this effect might have 

made Tween® 80 unnecessary in this step to further reduce enzyme-substrate interaction.  

3.3 Thin stillage yield, and solid and oil partitions in thin stillage as affected by enzyme and 

surfactant treatments 

The composition and properties of thin stillage are very important for the performance of piping, 

centrifuge efficiency, oil recovery and energy cost in ethanol plant. The wet yield of thin stillage was 

significantly improved in Fermgen treatment (85.9%) and PC treatment (87.1%) compared to the control 

(79.3%). Whereas, PC treatment had similar solid content (7.2%) and Fermgen treatment had lower solid 
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content (6.8%) compared to the control (7.2%). Similar results were observed by Yao et al. (2014) and 

Luangthongkam et al. (2015) when fiber hydrolyzing enzymes were used in fermentation. Likely, the 

hydrolysis action of the enzymes reduced the water holding capacity of insolubles in the wet cake by 

interrupting the large protein matrix and cell wall network. In addition, the enzyme actions might have 

reduced the particle size of the solid substrates. Both functions of the enzymes resulted in more liquid and 

finer solids partition in thin stillage, which contributed to the high thin stillage yield and solid partition in 

thin stillage from the PC and Fermgen treated process.  

A significant reduction of solid content in thin stillage was observed when Tween® 80 was added in 

corn slurry, which are 7.2% versus 6.8% (Control versus C500), 6.8% versus 6.6% (Fermgen versus 

F500), and 7.2% versus 6.9% (PC versus PC500) in Table 2. Lower solid content in thin stillage is 

preferable in ethanol plants, due to low energy cost in piping and less fouling of evaporators. To further 

understand the reason for this observation, we tested the WHC of the dried wet cake for Tween® 80 

solution and water. The dried wet cake can hold more DI water (4.39 ± 0.17 g water/g dried wet cake) 

than Tween® 80 solution (3.87 ± 0.02 g solution/ g dried wet cake). This may be explained by the 

reduced capillarity of solution due to the action of surfactant, which make the liquid separation easier 

from the dried wet cake by centrifugation.  

Enzymes and Tween® 80 treatments significantly increased oil partition in thin stillage. Since more 

oil is in thin stillage, more oil can potentially be extracted. Table 2 shows that using hydrolyzing enzymes 

significantly increased oil partition in thin stillage from 40.8% (Control) to 52.6% (Fermgen) and 52.3% 

(PC). Comparing with using enzyme alone, Tween® 80 further improved the oil partition in thin stillage, 

which were 40.8% versus 49.3% (Control versus C500), 52.6% versus 58.5% (Fermgen versus F500), and 

52.3% versus 54.9% (PC versus PC500). Before decanting, the oil maybe present in different forms and a 

large proportion of oil remains in unbroken cells and large matrix, like protein and cell wall components. 
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This part of oil can be released by enzyme hydrolyzing the solids or large particles. These findings agreed 

with the reported observations in literatures (Luangthongkam et al., 2015; Yao et al., 2014), which shown 

an improved oil partition in thin stillage by adding NSPs hydrolyzing enzymes during fermentation. 

Different from the action of enzymes, the use of surfactant improved the oil partition in a different way, 

i.e. washing the adhering oil from wet cake surface into the aqueous phase. However, when hydrolyzing 

enzymes were added, the improvement of oil partitioning in thin stillage by adding surfactant in corn 

slurry was reduced comparing with non-enzyme treatments, which partitioned 8.5% more of total corn oil 

from the control to C500, 5.9% from Fermgen to F500, and 2.6% from PC to PC500. The use of 

hydrolyzing enzymes weakened the function of surfactant, probably due to the enzymatic hydrolysis of 

protein and cell wall that freed the adhering oil into thin stillage. This hypothesis is supported by the 

parallel improvements in solid partition and oil partition when enzymes were used (Table 2).  

3.4 Oil recovery from CCDS as affected by surfactant and enzyme  

The use of hydrolyzing enzymes significantly improved oil content in CCDS, as shown in Table 3. 

When Tween® 80 was used, the significant oil content increase was found in the control (6.8% versus 

9.3%, Control versus C500), whereas, only numerical but not significant improvements were observed on 

Fermgen and PC treatment.  

In the lab-scale experiment of oil recovery from CCDS, the use of PC in fermentation significantly 

improved oil recovery from 7.9% (control) to 17.4% (PC) when Tween® 80 was not added (Table 4). A 

similar finding has been reported by Yao et al. (2014) who found an increased free oil recovery from thin 

stillage after polysaccharide hydrolyzing enzyme treatment in fermentation. As expected, because of the 

polysaccharides being partially broken by the PC enzymes, the trapped oil would be released and present 

in the form of free oil. However, a significantly lower oil recovery was found when Fermgen was added 

in fermentation. The partial hydrolysis of protein maybe the reason for this observation. It has been 



www.manaraa.com

51 

 

reported that the emulsification ability of rice protein (Paraman et al., 2007), soy protein isolate (Kim et 

al., 1990) and pea protein isolate (Barac et al., 2011) can be enhanced by partial enzyme hydrolysis. The 

duration of proteolytic treatment and enzyme type played very important roles in the properties of enzyme 

modified proteins. In this study, the protease hydrolyzed corn protein may have worked as a good 

emulsifier to stabilize oil-in-water emulsion. 

When Tween® 80 was added in corn slurry, the significant improvement in oil recovery from CCDS 

was found in all treatments comparing with the non-surfactant treatments (Table 4). Especially for the 

Fermgen treatment, adding surfactant in the process significantly improved oil recovery from 4.0% 

(Fermgen) to 24.9% (F500) without significant change in oil content of CCDS (Table 3). 

Similarly, when Tween® 80 was added in CCDS directly, the significant improvement of oil 

recovery was found in all treatments comparing with non-surfactant treatments (Table 4). Protein is a 

major stabilizer for oil-in-water emulsion in CCDS. The oil recovery improvement of adding Tween® 80 

in CCDS has been explained as a result of surfactant and protein competition which formed an unstable 

emulsion (Fang et al., 2015), when proteins were replaced by surfactants. However, these improvements 

were significantly lower than when surfactant added in corn slurry.  

The enhanced oil recovery from CCDS by adding surfactant in corn slurry is explained with two 

proposed mechanisms 1) more available oil is present in CCDS, and 2) formation of more unstable 

emulsion. In the first explanation, surface adhering oil could have been moved from wet cake surfaces 

during 64 h of fermentation into the aqueous phase (Figure 1) and partitioned in thin stillage after 

decanting. This part of oil was present in thin stillage as suspended oil droplet (free or in emulsion) and 

can be recovered by centrifugation. In explanation for the second mechanism, when surfactant was 

introduced to corn slurry or CCDS, a protein-surfactant co-stabilized emulsion was formed (Figure 5). A 

higher concentration of protein on interfacial surfaces contributes to a stronger interaction among protein 
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molecules and this interaction stabilizes the protein enabled emulsion (Mackie et al., 1999). When 

Tween® 80 was added in CCDS, Tween® 80 competed and replaced protein from the interface of 

emulsion. Although surfactants like Tween® 80 can stabilize oil-in-water emulsions, they are not as 

strong as protein-protein interactions (Wilde et al., 2004). In this case, this emulsion has lower stability 

than protein stabilized emulsion (Wustneck et al., 1996). Zhang and Wang (2016) reported that the 

replacement between surfactant and protein was not be an instant process. Thus, after dispersing the 

Tween® 80 into CCDS by heating and shaking for 10 min in lab-scale experiment, only a relatively small 

proportion of protein-surfactant co-stabilized emulsion was formed, and this contributed to the improved 

oil recovery from CCDS. However, the oil-in-water emulsion was not fully formed yet in corn slurry. 

Thus, more Tween® 80 are involved in co-stabilizing oil-in-water emulsion with protein during 

fermentation. After 64 h of fermentation with desirable temperature and mechanical mixing, a relatively 

large proportion of protein-surfactant co-stabilized emulsion was formed. This emulsion was not stable, 

thus it contributed to a significantly higher oil recovery from CCDS after centrifugation (Table 4). These 

findings agreed with the observations from Zhang and Wang (2016), who also suggested adding Tween® 

20 at the initial stage of aqueous extraction of peanut oil. Based on the current observations and previous 

reports, the secondary mechanism might have the primary contribution to improved oil recovery. 

3.5 Tween® 80 recyclability in backset 

The 50% of water (w/w) was replaced by Tween® 80 containing thin stillage (backset) for making 

new batch of corn slurry. Based on the experiment design, Treatment 3 had 250 to 500 ppm Tween® 80 

and Treatment 4 had 500~750 ppm Tween® 80, depending on the concentration of active Tween® 80 in 

thin stillage backset. As shown in Table 5, Treatment 4 had significantly higher oil partition than 

Treatment 3, and the improvement (45.9 to 53.8%) was very similar to that between non-surfactant 

fermentation (Treatment 1, no backset) and 500 ppm surfactant fermentation (Treatment 2, no backset) 
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(40.8 to 49.6%). This observation indicated that the Tween® 80 in thin stillage backset cannot make the 

concentration of active Tween® 80 to 500 ppm in Treatment 3, and the final concentration of Tween® 80 

in Treatment 3 might be even lower than 300 ppm based on the oil partition trend in Figure 1. The 

recycled Tween® 80 in thin stillage backset may have lost its function as detergent. Since the effects of 

Tween® 80 on oil partition and oil recovery were observed, we believe that Tween® 80 was still in the 

thin stillage with entire molecular structure, and most of Tween® 80 molecules were located on the 

interface of oil-in-water emulsion in the backset and no free Tween® 80 worked as detergent to wash 

adhering oil in next batch of fermentation.  

4 Conclusion 

The large portion of oil stayed in the wet cake should be moved to thin stillage and to be recovered by 

centrifugation. Tween® 80 and hydrolyzing enzymes have shown to have the potential to increase DCO 

yield. Oil partition in thin stillage and the oil recovery from CCDS were also significantly improved 

without any negative effects on ethanol production. An additional benefit of using hydrolyzing enzymes 

and surfactant during fermentation is that the application of these technologies would not require any 

change in the design of a current ethanol plant. However, scale-up experiments are needed to further 

confirm the effectiveness on commercial scale. Moreover, research on the recyclability of the surfactant is 

needed to reduce process cost and study of treatment effects on quality of DDGS is needed. 
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Figure 1. Lab scale dry-grind ethanol process 
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Figure 2. Effect of surfactant concentrations on oil partition in thin stillage by decanting. Data sharing the 

same letter has no significant difference (p>0.05). 

 

 

 

 

 

    
Figure 3. Microscopic observations for surface of wet cake. Left: Control; Right: 500 ppm Tween® 80 

added treatment 
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Figure 4. Effect of Tween® 80 addition on fermentation rate and ethanol yield. C500: 500 ppm 

Tween® 80 added in fermentation step of control group 

 

 

 
Figure 5. Effect of protease and Tween® 80 addition on ethanol production rate and ethanol yield. 

Fermgen: 0.5% of dry corn weight protease was added; F500: 0.5% of dry corn weight protease 

and 500 ppm Tween® 80 were added 
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Figure 6. Effect of pectinase-cellulase (PC) and Tween® 80 addition on ethanol production rate 

and ethanol yield. C: control; PC: 0.2% of dry corn weight pectinase and 0.2% of dry corn weight 

cellulase were added; PC500: 0.2% of dry corn weight pectinase, 0.2% of dry corn weight 

cellulase and 500 ppm Tween® 80were added 
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Table 1. Effect of Tween® 80 and hydrolyzing enzymes in dry-grind fermentation on ethanol 

production. 

Treatment Maximum ethanol 

yield, g/100 g dry 

corn at 64 h 

Maximum ethanol 

production rate, g/100 

g dry corn/ h 

Control  28.13 ± 0.43 c 0.67 ± 0.11 d 

500 ppm Tween® 80 (C500) 30.71 ± 0.61b 0.67 ± 0.04 d 

Pectinase and Cellulase (PC) 34.52 ± 1.54 a 1.04 ± 0.05 c 

500 ppm +Pectinase and Cellulase 

(PC500) 

34.98 ± 0.25 a 1.05 ± 0.10 c 

Fermgen 35.19 ± 0.61 a 2.63 ± 0.20 a 

500 ppm + Fermgen (500F) 35.25 ± 0.15 a 2.31 ± 0.13 b 

Data sharing the same letter in the same column have no significant different (p>0.05). 

 

 

Table 2. Thin stillage production, solid and oil partition after decanting 

 Thin stillage 

wet yield, % 

Solid content in 

thin stillage, % 

Solid partition 

in thin 

stillage, % 

Oil partition in 

thin stillage, % 

Control 80.9±0.5 c 7.2±0.3 a 41.0±1.6 c 40.8±0.6 e 

500 ppm Tween® 80 (C500) 79.3±1.2 c 6.8±0.2 b 36.02±1.8 d 49.3±0.7 d 

Fermgen 85.9±1.3 b 6.8±0.1 b  47.1±2.1 b 52.6±0.1 c 

500 ppm + Fermgen (500F) 86.2±0.5 b 6.6±0.09 c 47.9±1.5 b 58.5±1.8 a 

Pectinase and Cellulase (PC) 87.1±0.3 a 7.2±0.1 a 52.2±1.0 a 52.3±1.6 c 

500 ppm +Pectinase and 

Cellulase (PC500) 

87.8±0.5 a 6.9±0.3 b 53.1±0.06 a 54.9±1.3 b 

Data sharing the same letter in the same column has no significant different (p>0.05). 
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Table 3. Total oil content in CCDS, % dry basis  

 Oil content in CCDS, db% 

Control 6.8±0.3 d 

500 ppm Tween® 80 (C500) 9.3±0.9 c 

Fermgen 13.3±0.1 a 

500 ppm + Fermgen (500F) 13.8±0.1 a 

Pectinase and Cellulase (PC) 10.7±0.3 b 

500 ppm +Pectinase and Cellulase 

(PC500) 

11.5±0.3 b 

Data sharing the same letter in the same column have no significant different (p>0.05). 

 

 

Table 4. Oil recovery from CCDS 

  Non-surfactant, % 

Surfactant added in corn 

slurry, % 

Surfactant added 

in CCDS, % 

Control 7.9±0.7 Cb 31.8±0.9 Aa 11.0±0.9 Bb 

Fermgen 4.0±3.8 Cc 24.9±5.9 Ab 9.3±0.4 Bc 

PC 17.4±1.7 Ca 24.5±1.8 Ab 19.3±0.9 Ba 

C: Control; PC: Pectinase/Cellulase added. Data sharing the same lower-case letter on the same 

column have no significant different (p>0.05). Data sharing the same upper-case letter on the same 

row have no significant different (p>0.05). 

 

 

Table 5. Tween® 80 recycling stability in thin stillage backset 

 Oil distribution in thin stillage, % 

Treatment 1: Corn + 100% water 40.8 ± 0.6 b 

Treatment 2: Corn + 100% 500ppm 49.6 ± 0.7 a 

Treament 3: Corn + 50% 500ppm + 

50% B 

45.9 ± 1.1 b 

Treament 4: Corn + 50% 1000ppm + 

50% B 

53.8 ± 0.9 a 

500ppm: 500 ppm Tween® 80 water solution; 1000 ppm: 1000 ppm Tween® 80water solution; B: 

Backset from 500 ppm Tween® 80 treated fermentation. Data sharing the same letter in the same 

column have no significant different (p>0.05). 
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Abstract: 

Currently, various hydrolyzing enzymes are used in dry-grind ethanol process to improve ethanol and/ or 

corn oil yields, but their effects on characteristics of dried distillers grain with solubles (DDGS) are not 

thoroughly understood. In this study, the effects of using acid-stable protease, pectinase and cellulase 

enzymes during fermentation step on chemical and physical characteristics of DDGS were evaluated. 

Effect on DDGS digestibility was tested using an in vitro pig digestion model. The use of protease 

increased fiber content (36.12%) and lowered protein digestibility (64%) of DDGS compared to the 

control (22.41% and 69%, respectively). The use of pectinase and cellulase also increased fiber content of 

DDGS (28.95%) but they significantly improved protein content (26.81%) and protein digestibility (73%) 

compared to other treatments. DDGS tended to have a darker color when hydrolyzing enzymes were used. 

Therefore, the use of enzymes had significant altered composition and characteristics of DDGS. Pectinase 

and cellulase mix is an effective combination to produce high quality DDGS without undesirable effects 

on ethanol production. 

 

Keywords: dry distillers grain with solubles (DDGS), in vitro digestion, proximate composition, amino 

acid profile, digestibility, color, water holding capacity. 

Highlights:  

 The significant effects of using hydrolyzing enzymes during fermentation on DDGS properties were 

observed. 

 Using protease enzyme reduced protein content and increased fiber content of DDGS. 

 Using pectinase and cellulase made DDGS darker but increased digestibility of DDGS to pig. 
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1 Introduction 

Since 2007, 97.1% of total DDGS production has come from dry-grind ethanol plant with the 

remaining 2.9% from beverage distillers (Batres-Marquez, 2016). In general, about 17 pounds of DDGS 

are produced from one bushel undergoing dry-grind ethanol process. In 2014/15 about 36 million metric 

tons (MMT) of DDGS were produced by U.S. ethanol plants, with the largest proportion (72%) consumed 

by the U.S. domestic livestock and poultry sectors (Batres-Marquez, 2016); the beef and dairy industries 

utilized 85% of DDGS in domestic market (Wisner, 2015).   

DDGS has become the most economical and widely available alternative feed ingredient in U.S. 

swine diets. Its high energy, protein and lysine content along with its relatively high concentration of 

phosphorus and phosphorus digestibility, make it an excellent partial replacement for corn, soybean meal 

and inorganic phosphate in swine diets. It was reported by Whitney et al. (2006) that feeding 30% DDGS 

in swine finishing diets did not have any detrimental effects on pork muscle quality. Shurson and others 

(2004) reported a satisfactory growth performance when feeding up to 25% DDGS in nursery diets. 

However, feeding higher levels of DDGS to swine has created some challenges due to the variation in 

nutrition content and value, and the digestibility among various sources of DDGS. Especially when the 

diet is designed based on protein content, these variations have unpredictable effects on swine growth 

performance and pork quality. 

There could be many causes to the variations in the DDGS quality. Some of them have been 

identified as the proportions of syrup and wet cake during mixing and drying, varying raw material 

composition (Belyea et al., 2010) and processing methods (Liu, 2009). Ethanol plants are constantly 

improving process technologies to increase profit. However, the effect of such variations on DDGS 

quality has not been reported. 
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One of the widely applied technologies in ethanol plants is the use of hydrolyzing enzymes during 

fermentation. These enzymes are used to improve ethanol production and corn oil recovery, and some 

commercial enzyme products are available on the market. For example, FermgenTM (Dupont) is an acid 

proteolytic enzyme, which can randomly hydrolyze corn protein to enhance yeast efficiency; OlexaTM 

(Novozymes) is an acid proteolytic enzyme, which targets oleosin protein that stabilizes oil body and 

helps to extract more oil; AvantecTM (Novozymes) is an enzymes cocktail, which claims to have higher 

ethanol yields and oil recovery yield. A few studies have been reported in literature to investigate the 

effects of hydrolyzing enzymes on fermentation performances, mainly on ethanol yield. Johnston and 

McAloon (2014) used acid-stable protease in fermentation step and found an increase of ethanol 

production rate. Non-starch polysaccharides (NSPs) hydrolyzing enzymes improved ethanol production 

by producing more of fermentable sugar and making the starch more available (Yao et al., 2014; 

Luangthongkam et al., 2015; Klosowski et al., 2010).  

The protease and NSPs hydrolyzing enzymes could hydrolyze the non-fermentable matters during 

dry-grind ethanol process. These interactions will affect the resulting DDGS composition. NSPs 

hydrolyzing enzymes could degrade cell wall components and change the relative contents of other 

components. Protease could reduce the protein content but increase free amino acid content, and relatively 

increase fiber content. Thus, we hypothesized that the enzyme treatments in fermentation step of dry-

grind ethanol process could significantly affect DDGS characteristics, including digestibility. The 

objectives of the study were 1) to determine the effects of using hydrolyzing enzymes during fermentation 

on DDGS composition and physical properties and 2) to identify the effects of enzyme hydrolysis during 

fermentation on DDGS digestibility by an in vitro pig digestion model.  
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2 Materials and Methods 

2.1 Materials  

Fermgen is an acid-stable protease from Trichoderma reesei with activity 1000 SAP units/g and 

provided by DuPont Industrial Biosciences (Palo Alto, CA). Cellulase (activity 75000 CU/g) and 

pectinase (activity 3500 ENDO-PG/g) were provided by Bio-Cat Biotechnology Company (Troy, VA). 

Ground corn, α-amylase, gluco-amylase and chlorine dioxide were provided by local dry-grind ethanol 

plant (Lincolnway Energy, LLC, Nevada, Iowa). Porcine pepsin (P-7000), pancreatin solution (Grade IV) 

and amyloglucosidase (amyloglucosidase from Aspergillus niger; 120 U/g) were bought from Sigma 

Aldrich (Saint Louis, MO, USA). Other chemicals, including hydrochloride acid, sulfuric acid, sodium 

hydroxide, phosphate buffer, were bought from Fisher Scientific (Fairlawn, NJ, USA). 

2.2 Dry-grind ethanol process and preparation of DDGS samples 

The liquefaction and simultaneous saccharification and fermentation of the corn slurry were 

performed using a 250-mL Tornado IS6 Overhead Stirring System (Radleys Discovery Technologies, 

Shire Hill, Saffron Walden, UK) equipped with an anchored stirring shaft. Ground corn was mixed with 

cold DI water at a 1:2 ratio in 250-mL round-bottom flasks. The total amount of slurry was maintained at 

225 – 230 g. α-Amylase (0.15 mL) was added to the slurry, and the slurry was mixed and heated at 80°C 

for 3 h. After that, the flasks were cooled to 30°C in an ice bath. The pH of the cooled slurry was adjusted 

to 4.0 with 3 M sulfuric acid. Chlorine dioxide (0.021 mL), ammonium sulfate (0.065 mL of 0.2 g/g 

water), gluco-amylase (0.15 mL) and dry yeast (0.15 g) were added. Fermentation was carried out at 

30 °C for 64 h with continuous stirring at 190 rpm. For the treatment of adding hydrolyzing enzymes in 

fermentation step, 0.375 ml of protease or 0.3 g mixture of Pectinase and cellulase (PC, 1:1, w:w) was 

added before starting fermentation.  
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2.3 DDGS production 

 After fermentation, the whole beer went through rotary evaporation at 80 °C for 10 mins to produce 

whole stillage and ethanol. Whole stillage was further separated into thin stillage and wet cake by a lab-

scale decanting device (Wang et al., 2009). DDGS was made by drying the mixture of 100% wet cake and 

50% thin stillage from the same batch of fermentation at 50 °C for 72 h in the forced air oven. 

2.4 Proximate composition analyses for DDGS 

Contents of crude fat, ash, and crude protein were measured by Eurofins Scientific Company (Des 

Moines, IA). Fiber profile was analyzed by a science laboratory in Department of Agronomy, Iowa State 

University. AOAC standard methods were followed for all of these tests. 

2.5 Free and total amino acid in DDGS 

Free amino acids (FAA) of DDGS were quantified by using a Phenomenex EZ:faast kit™. FAA 

extract for the EZ: faast analysis was prepared according to Hacham et al. (2002) with modifications. To a 

1.5 mL micro centrifuge tube, freeze-dried DDGS (200 mg), norvaline (internal standard: 150 µL of 0.2 

mM/mL) and 500 µL of solvent mixture (DI water: chloroform: methanol in 3:5:12, v/v) were added and 

vortex mixed. The mixture was centrifuged (3000 g for 10 min) and the supernatant was collected in a 

new tube. The solid precipitate was extracted a second time using a fresh batch of same solvent mixture, 

and the supernatants from the two extractions were combined. To the tube containing supernatants, 350 

µL of chloroform and 450 µL of DI water were added, vortexed and centrifuged (3000 xg for 10 min). 

The upper water – methanol phase was pipetted into a new tube and 100 µL of sample was prepared by 

using FAA analysis Phenomenex EZ: faast kit™ for GC analysis. One µL of the derivitized sample was 

injected into Phenomx CGO-7169 ZB-AAA capillary column (10 m – 0.25 mm ID). The gas 

chromatograph (6890N, Agilent Technologies Inc., Agilent Technologies, Inc., Wilmington, DE) had 

helium as a carrier gas with a linear flow rate of 68 cm3/s. The GC was equipped with an FID detector, 
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which was maintained at 250 °C. A split injector was used at a temperature of 250 °C, with split ratio of 

15:1. Initial column temperature was 110 °C which was raised immediately after injection to 320 °C at a 

rate of 30 °C/min. For the MS detector (5973, Agilent Technologies Inc., Agilent Technologies, Inc., 

Wilmington, DE), the ion source was operated at 240 °C with electron multiplier voltage at 1647 VDC. 

For total amino acid analysis, Gas-phase hydrolysis of the freeze-dried DDGS samples was 

performed in a Pico-tag Waters workstation (Waters Cooperation, Milford, MA). Dried solids (20 mg) 

were carefully weighed into pyrolyzed (550 °C for 3 h) glass tubes. Before adding the sample, norvaline 

(internal standard: 250 µL of 0.2 mM) was fixed in the tubes by drying in a Speed Vac concentrator 

(Savant SVC-100H, Farmingdale, NY). The tubes with test samples were placed in the reaction vessel and 

HCl (350 µL of 6 N) and phenol (15 µL) were added to the bottom of the reaction vessel. The reaction 

vessel was then capped (with an open valve) and placed on a pico-tag workstation (in a hood) to create an 

inert atmosphere in the vessel by alternately subjecting to vacuum and nitrogen (four times). The reaction 

vessel valve was then closed, removed from the pico-tag work station and placed in the heater at 150 °C 

for 65 min. The reaction vessel was carefully removed from the heater, the vacuum was released, and the 

tubes were transferred to a new reaction vessel and vacuumed until all the acid was evaporated (10 min). 

EDTA of 25 µL (1 µL of 20% EDTA solution in 9 µL of DI water) was then added to the gas-phase 

hydrolyzed sample in the tube. The gas-phase hydrolyzed DDGS was analyzed following the same 

procedure used for the FAA analysis.  

The same total amino acid quantification procedure was used for the solid residue after in vitro 

digestion. Then, the total amino acid in DDGS minus the total amino acid in the solid residue was the 

digestible amino acid. The procedure of in vitro digestion is described in the Section 2.7. 

2.6 Energy content of DDGS 

Gross energy was estimated based on compositional profile by the following equation: 
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Gross energy, kcal/kg = 4553 + (45.6 × 𝐶𝑟𝑢𝑑𝑒 𝑓𝑎𝑡%) (𝐾𝑒𝑟𝑟 𝑒𝑡 𝑎𝑙. , 2013) 

2.7 In vitro digestion model 

Enzymatic digestion in the stomach and small intestine was simulated using a modified method 

described by Boisen (1991) and Anguita et al (2006). Briefly, 10 g of sample was mixed with phosphate 

buffer (250 mL, 0.1 M, pH 6.0) and HCl solution (30 mL, 0.2 M), and the pH was adjusted to 2.0 using 1 

M HCl or 1 M NaOH. Porcine pepsin (1 mg/ml) was added, and samples were incubated for 4 h at 40 °C. 

Afterthat, phosphate buffer (100 mL, 0.2 M, pH 6.8) and NaOH solution (40 mL, 0.6 M) were added, and 

the pH was adjusted to 6.8. Pancreatin solution (10 mL) and amyloglucosidase (55 mg) were added, and 

samples were incubated for 3.5 h at 40 °C. After pepsin digestion, the mixture was centrifuged (15 min at 

room temperature and 3000 xg) and decanted into supernatant and residue. The supernatant and residue 

were freeze-dried. Supernatant was boiled for 30 min before freeze drying.  

Since nutrients in supernatant were recognized as digestible nutrients for pig. Four related nutritional 

characters were derived, which were dry matter digestibility, protein digestibility, digestible amino acid 

content, and amino acid digestibility. Digestible amino acid content was determined by measuring the 

amino acid profile in supernatant. These parameters were calculated using following equations, which 

were adjusted from Vries et al. (2013): 

Dry matter digestibility, %

=
𝐷𝑟𝑦 𝑚𝑎𝑡𝑡𝑒𝑟 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑖𝑛 𝑠𝑢𝑝𝑒𝑟𝑛𝑎𝑡𝑎𝑛𝑡 𝑎𝑓𝑡𝑒𝑟 𝑖𝑛 𝑣𝑖𝑡𝑟𝑜 𝑑𝑖𝑔𝑒𝑠𝑡𝑖𝑜𝑛, 𝑔

𝐷𝑟𝑦 𝑚𝑎𝑡𝑡𝑒𝑟 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑖𝑛 𝐷𝐷𝐺𝑆 𝑏𝑒𝑓𝑜𝑟𝑒 𝑖𝑛 𝑣𝑖𝑡𝑟𝑜 𝑑𝑖𝑔𝑒𝑠𝑡𝑖𝑜𝑛, 𝑔
× 100% 

 

Protein digestibility, % =
𝑃𝑟𝑜𝑡𝑒𝑖𝑛 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑖𝑛 𝑠𝑢𝑝𝑒𝑟𝑛𝑎𝑡𝑎𝑛𝑡 𝑎𝑓𝑡𝑒𝑟 𝑖𝑛 𝑣𝑖𝑡𝑟𝑜 𝑑𝑖𝑔𝑒𝑠𝑡𝑖𝑜𝑛, 𝑔

𝑃𝑟𝑜𝑡𝑒𝑖𝑛 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑖𝑛 𝐷𝐷𝐺𝑆 𝑏𝑒𝑓𝑜𝑟𝑒 𝑖𝑛 𝑣𝑖𝑡𝑟𝑜 𝑑𝑖𝑔𝑒𝑠𝑡𝑖𝑜𝑛, 𝑔 
× 100% 
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Digestible amino acid content, mg/g (lysine as example)

= 𝐿𝑦𝑠𝑖𝑛𝑒 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑖𝑛 𝐷𝐷𝐺𝑆, 𝑚𝑔/𝑔

−
𝐿𝑦𝑠𝑖𝑛𝑒 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑖𝑛 𝑟𝑒𝑠𝑖𝑑𝑢𝑒 𝑎𝑓𝑡𝑒𝑟 𝑖𝑛 𝑣𝑖𝑡𝑟𝑜 𝑑𝑖𝑔𝑒𝑠𝑡𝑖𝑜𝑛, 𝑚𝑔

𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝐷𝐷𝐺𝑆 𝑏𝑒𝑓𝑜𝑟𝑒 𝑖𝑛 𝑣𝑖𝑡𝑟𝑜 𝑑𝑖𝑔𝑒𝑠𝑡𝑖𝑜𝑛, 𝑔
 

 

Amino acid digestibility, % (lysine as example)

=
𝐷𝑖𝑔𝑒𝑠𝑡𝑖𝑏𝑙𝑒 𝐿𝑦𝑠𝑖𝑛𝑒 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑎𝑓𝑡𝑒𝑟 𝑖𝑛 𝑣𝑖𝑡𝑟𝑜 𝑑𝑖𝑔𝑒𝑠𝑡𝑖𝑜𝑛, 𝑚𝑔

𝑇𝑜𝑡𝑎𝑙 𝐿𝑦𝑠𝑖𝑛𝑒 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑖𝑛 𝐷𝐷𝐺𝑆 𝑏𝑒𝑓𝑜𝑟𝑒 𝑖𝑛 𝑣𝑖𝑡𝑟𝑜 𝑑𝑖𝑔𝑒𝑠𝑡𝑖𝑜𝑛, 𝑚𝑔
× 100% 

2.8 Surface color measurement 

A Minolta colorimeter (Model CR-300) was used to measure surface colors of DDGS. The colors 

were expressed in L* a* b* color space, in which L* indicates lightness, a* is redness, and b* is 

yellowness. 

2.9 Water holding capacity of DDGS 

Water holding capacity (WHC) was determined by soaking 250 mg of dried material in 10 mL of 

water for 24 h at room temperature. Samples were centrifuged in room temperature at 5000 xg for 20 min, 

and subsequently the tube was inverted and drained for 15 min. Water holding capacity was calculated as 

the weighed quantity of water retained per gram of dry material (Pustjens et al., 2012). 

2.10 Statistical analysis 

All the DDGS samples were produced from three separate batches of fermentation. For each batch of 

fermentation, three different types of DDGS were produced, including control, Fermgen, and pectinase 

and cellulase DDGS. All the analyses were duplicated on sample. The data were analyzed using SAS 

(Version 9.4, SAS Institute Inc. Cary, NC) to test treatment difference at 95% significant level. 
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3 Results and Discussion 

3.1 Chemical and physical characteristics  

3.1.1 Effect of using enzymes on composition of DDGS 

The compositions of DDGS are given in Table 1. Dietary fibers accounted for the largest proportion 

in all DDGS samples. The Fermgen DDGS had the highest content of NDF (36.12%) and ADF (9.26%), 

and the pectinase and cellulase (PC) DDGS had significant higher fiber content than that in control 

DDGS. The remaining dry matters include crude fat, crude protein and ash. The control DDGS had 

significantly lower crude fat content (8.55%) than Fermgen (10.84%) and PC (10.70%) DDGS. The PC 

DDGS had the highest crude protein content (26.81%) compared with the control (22.41%) and Fermgen 

(23.40%) DDGS. The ash contents in Fermgen (3.61%) and pectinase and cellulase (3.50%) DDGS were 

significantly higher than that in control DDGS (2.96%). Ethanol yield had significant effects on 

compositions, since the efficiency of converting starch to ethanol directly relates to starch residue in 

DDGS. The ethanol yield in the control was 28 g ethanol/100 g dry corn, which was significantly lower 

than Fermgen (35 g ethanol/100 g dry corn) and PC (34 g ethanol/100 g dry corn) treated fermentation. 

The low fermentation efficiency in the control left more unconverted starch in DDGS, which reduced the 

relative proportion of other DDGS components comparing with enzymes treated DDGS.  

Moreover, DDGS dry matter yields significantly reduced when enzymes were used: from 11.53 g/100 

g dry corn in control to 9.25 g/100 g dry corn for Fermgen DDGS and 9.01 g/100 g dry corn for PC 

DDGS. There were two factors, fermentation efficiency/starch residue and particle size reduction, which 

contribute to the lower DDGS yield in enzyme treated DDGS. Enzyme hydrolysis reduced the particle 

size of non-fermentable matters, and these hydrolyzed matters went to the thin stillage by decanting, 

which resulted in higher solid partition in thin stillage than that in the control. Since only part of the thin 
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stillage (50%) stream was mixed with wet cake for making DDGS, using hydrolyzing enzymes during 

fermentation reduced the DDGS yields. 

Fermgen DDGS had a similar crude protein content (23.40%) compared to the control (22.41%), 

whereas, a lower starch residue in Fermgen DDGS was expected because of the higher ethanol yield. The 

functions of using hydrolyzing enzymes for non-starch matters in dry-grind ethanol process have been 

reported by several studies. These included improving ethanol yield, affecting efficiency of decanting and 

increasing oil partition in thin stillage (Johnston and McAloon, 2014; Yao et al., 2014; Sekhon et al., 

2015; Luangthongkam et al., 2015). Fermgen is an acid-stable protease, which hydrolyzes corn protein to 

produce free amino acid and short-chain peptides for yeast. The breakdown amino acids and peptides may 

not be fully used by yeast, and moved to thin stillage by decanting. In this study, only 50% of thin stillage 

was mixed with wet cake to produce DDGS, which meant that a high amount of amino acids were lost in 

thin stillage and led to a low protein content in Fermgen DDGS when low starch residue in Fermgen 

DDGS was expected. However, corn fibers in Fermgen treated ethanol process still remained unmodified, 

and accumulated in wet cake after decanting, which contributed to the highest fiber content in Fermgen 

DDGS.  

Pectinase and cellulase (PC) significantly affected the compositions of DDGS. Even though, the 

lower starch residue relatively increased the proportion of other components, which gave PC DDGS a 

significantly higher fiber content (28.95%) and protein content (26.81%) compared to the control (23.39% 

and 22.41%, respectively, Table 1). The fiber content of PC DDGS was still, however, significantly lower 

than Fermgen DDGS. PC can hydrolyze pectin and cellulose, which are the major cell wall components. 

Pectinase not only hydrolyzes pectic substance, but also has been reported to improve cellulose and 

hemicellulose hydrolysis. Because pectic substance sterically covered cellulose and hemicellulose, 

breaking down the barrier can significantly improve hydrolyzing cellulose and hemicellulose (Ben-
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Shalom, 2006). The use of PC enzymes hydrolyzed the cell wall components to produce some 

fermentable monosaccharide and make the corn starch available, thus PC enzymes improved the ethanol 

yield in fermentation. The hydrolysis of cell wall also resulted in smaller fragments that may have been 

moved to thin stillage after decanting. When making DDGS, only part of the fibers in thin stillage were 

added back to DDGS that resulted in lower fiber content in PC DDGS than Fermgen DDGS.  

3.1.2 Gross energy content of DDGS 

The gross energy value was estimated by using an equation reported by Kerr et al. (2013), which was 

based on the crude fat content for mono-gastric animals. As shown in Table 1, Enzyme treated DDGS had 

significantly higher energy contents, which were 5027 (Fermgen) and 5020 (PC) kcal/kg DDGS 

compared to the control DDGS (4922 kcal/kg DDGS). Enzyme hydrolysis significantly increased the 

relative content of crude fat by decreasing the contents of other components, i.e. starch and fibers. 

Metabolizable energy and digestible energy were not calculated, due to the difficulty in estimating 

digestibility with the complex composition profiles of DDGS in the current study. The energy and nutrient 

contents in DDGS are more variable than in corn and soybean meal, because of the variation of DDGS 

components from different sources. Moreover, the effects of enzyme hydrolysis on properties of corn 

protein and fibers were largely unknown. Methods for estimating energy content can quickly become 

outdated due to evolving production technologies being implemented in ethanol plants. This created 

significant challenges for determining relative economic value and establishing accurate nutrient value 

when formulating swine diets (Urriola et al., 2014).  

3.1.3 Effects of enzyme hydrolysis on amino acid profile of DDGS 

PC DDGS had the higher contents for most of amino acids than the control and Fermgen DDGS 

(Table 2). The amino acids of greatest practical importance in swine diet formulation are lysine, 

tryptophan, threonine and methionine, and lysine is generally the first limiting amino acid in most of diets 
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(Lammers et al., 2007). In current study, PC DDGS had the highest contents for these four amino acids, 

whereas, Fermgen DDGS had very similar contents of these four amino acids compared to the control. 

The crude protein content maybe the major factor for the variation of amino acid content in DDGS. For 

the same protein content, the total amino acid content of Fermgen DDGS was similar to that of the 

control. However, the lysine concentration was very similar in control (7.31 mg/g dry matter), Fermgen 

(7.41 mg/g dry mater) and PC (7.61 mg/g dry matter) DDGS. Although the crude protein content in 

Fermgen DDGS was similar to the control DDGS, there was significantly higher free amino acid content 

in Fermgen DDGS (6.57 mg/g dry matter) than that in the control (1.13 mg/g dry matter) and PC (0.93 

mg/g dry matter) DDGS, as shown in Table 2. It could be explained by the protease enzyme hydrolysis, 

which produced free amino acids during fermentation and these free amino acids went to DDGS within 

thin stillage as backset. 

The value of total amino acid content is much lower than the value of crude protein content for all 

three treatments. The sources of the variation could be due to measuring method, instrument and 

chemicals (Badawy et al., 2008). Crude protein is not a true measure of amino acid content of a feed, but 

it is a measure of the amount of total nitrogen present in a particular sample (Lammers et al., 2007). Total 

nitrogen determination by the Dumas combustion method includes all inorganic and organic nitrogen. 

Nonetheless, the proportions of total amino acid content to crude protein content are very similar in these 

three DDGS samples, which was 79%. It is more meaningful to compare the contents of amino acids 

among three DDGS samples than crude proteins.   

3.2 Surface color and water holding capacity of DDGS 

Enzyme hydrolysis had significant effect on color of DDGS. As shown in Table 3, enzyme hydrolysis 

had no effect on redness (a*) and yellowness (b*), whereas, significant differences were found in 

lightness (L*), which were 45.65 (Control), 33.94 (Fermgen), and 37.51 (PC). Using hydrolyzing 
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enzymes made DDGS visibly darker than control, and Fermgen DDGS was even darker than PC DDGS. 

The main reason for this is attributed in literature to enhanced Maillard reactions during producing 

DDGS. Ames (1990) summarized that pentose sugars reacted more readily than hexoses which were more 

reactive than disaccharides. Baxter (2006) reported that tryptophan, histidine and lysine were vulnerable 

to Maillard process comparing with other free amino acids. The addition of pectinase hydrolyzed pectin 

and released pentose sugars, such as xylose and arabinose. In addition, the use of Fermgen significantly 

increased the free amino acid content comparing to the control and PC treatment. Enzyme hydrolysis 

provided more substrates to Maillard reaction, and the protease had more significant effect than the 

pectinase and cellulase due to release of more free amino groups during hydrolysis. 

Water holding capacity is very important for effective digestion to occur in the animal (Ngoc et al., 

2012). Kyriazakis and Emmans (1995) summarized that the water holding capacity could be an 

appropriate measure to predict the maximum feed intake capacity of pigs, and they found that diets with 

higher water holding capacities decreased feed intake by the pig. The feed with higher water holding 

capacity can hold more water and has a larger volume than the one with lower capacities. Thus, the higher 

water holding capacity feed could make the animal satiated with smaller amount of feed, and less 

nutrients can be digested before the animal stopping eating. Pectinase and cellulase DDGS had the lowest 

water holding capacity value (3.29 g water/g dry matter) compared to the control (3.70 g water/g dry 

matter) and Fermgen (4.18 g water/g dry matter) DDGS. Polysaccharides were the major components in 

DDGS and had high water holding capacity. The Fermgen DDGS had highest water holding capacity due 

to the highest fiber content (Table 1). The PC DDGS had higher fiber content but lower WHC compared 

to the control group. This observation could be explained by the function of pectinase and cellulose, 

which broke the cell wall structure and decreased its ability to hold water. 
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3.3 Protein and dry matter digestion affected by enzyme treatment 

The protein digestibility and the dry matter digestibility of DDGS are shown in Figure 1 and Figure 2. 

The dry matter digestibility of control (46%) and PC DDGS (45%) were significantly higher than 

Fermgen DDGS (31%). Moreover, Fermgen DDGS had significnatly lower protein digestibility, because 

only 63% of total protein in DDGS was solublilized and partitioned in supernatant after in vitro digestion, 

compared to the control (69%) and PC (73%) DDGS.  

There are many factors that affect the digestibility of nutrients in feed, but the most possible reason in 

the current study was the compositional profile of DDGS, especially the dietary fibers which affect the 

digestibility of other components. The major concern when including fiber in diet for mono-gastric animal 

is that a high fiber content can decrease nutrient utilization and lower net energy values (Noblet and Le 

Goff, 2001). However, these carbohydrates are not only indigestible to gastrointestinal tract enzymes, but 

also reduce enzyme efficiency on digesting other nutrients, such as crude protein, lipid, and starch 

(Gutierrez et al., 2014; Zhang et al., 2013). In this case, the high fiber content in Fermgen DDGS 

significanlty reduced the digestibility of other nutritional components in the DDGS, especially for crude 

protein and essential amino acids.  

PC DDGS had higher fiber content, but its protein digestibility was also higher compared to the 

control. PC DDGS had darker color but higher protein digestibility than the control. It has been reported 

that the L* was significantly correlated with digestibility of lysine and other amino acids. Cromwell et al. 

(1993) reported that lysine concentrations tended to be the highest in the lightest colored DDGS sources. 

Ergul et al. (2003) shown that L* was significantly correlated with digestibility of lysine and other amino 

acids in a poultry study. Similarly, studies with pigs showed lower amino acid digestibility in DDGS 

sources that had lower L* values compared with higher L* values (Whitney et al., 2000; Fastinger and 

Mahan, 2006). In the current study, the results of Fermgen DDGS agreed with those reports. However, the 
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results from PC DDGS did not. PC DDGS had significantly higher protein digestibility (Figure 1), amino 

acid digestibility (Table 4) and slightly higher lysine content (Table 2), but with significantly darker color 

than the control. That could be a result of the changings in corn cell wall structure that occur during the 

PC enzymes hydrolyzing, as illustrated by Yu and Nuez-Ortin (2010) that the high fraction of protein is 

associated with cell wall material in DDGS. The benefit of using pectinase and cellulase enzyme on 

DDGS digestibility has also been confirmed by Vries and others (2013), who reported the increased 

protein digestibility in DDGS when cell wall degrading enzyme was blended with DDGS. They explained 

that protein associated with cell wall material was released more easily after enzyme treatment. 

3.4 Amino acid digestibility affected by enzyme treatment 

The effects of enzyme hydrolysis on amino acid digestibilities are shown in Table 4. Fermgen DDGS 

had the lowest digestibility and PC DDGS had the highest digestibility for almost all amino acids. The 

average digestibility for all amino acids were 59.2% (control), 43.9% (Fermgen) and 70.0% (PC) in these 

three treatments. For the specific amino acids with critical functions in pig diet, Fermgen DDGS had the 

lowest digestibility for lysine, tryptophan, threonine and methionine, especially lysine which only had 

digestibility of 30.9% compared to the control (50.3%) and PC (52.3%) DDGS. Fermgen DDGS had the 

similar crude potein content and total amino acid content to the control DDGS but significantly lower 

amino acid digestibility than the control. It could be explained by the same reason as its low crude protein 

digestibility in Section 3.3, that the high fiber content in Fermgen DDGS limited its protein digestibility 

for pigs. Thererfore, PC DDGS might be an excellent choice for pig diet, because it can be a better source 

for required amino acids than the Fermgen DDGS.  

3.5 Compositional variations between current study and other works 

Some variations were found between the compositions of DDGS in current study and the profiles of 

general DDGS on the market, such as crude fat content (generally 10~12% versus 8~10% in this study) 
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and crude protein content (generally >30% versus 22-27% in this study). Wider variations among DDGS 

products from different sources are very common. In the current study, the DDGS for enzyme treatments 

was produced from only one batch of fermentation without backset recycling; the ratio of mixing syrup 

and wet cake might be significant different from that of conventional ethanol plants. Thus, the 

compositions of DDGS from the current study can only be compared to the treatments in the same study 

instead of with the results of other studies with industry-scale DDGS.  

4 Conclusion 

The use of hydrolyzing enzymes during fermentation had significant effects on the chemical, physical 

and nutritional characteristics of DDGS. Under the similar processing conditions, acid-stable protease 

(Fermgen) increased the fiber contents and reduced protein and dry matter digestibility to pig; pectinase 

and cellulase increased both protein and fiber contents, and had higher protein and dry matter digestibility 

to pig. Pectinase and cellulase mix could be an excellent choice for ethanol plants to improve not only 

ethanol yield, but also DDGS quality. However, the use of hydrolyzing enzymes could give darker color 

to DDGS, which might affect its market price. Dry-grind ethanol processors need to evaluate the effects 

of enzymes on products quality, and carefully control process conditions for increasing quality and profit. 
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Tables and Figures 

 
Figure 1. Crude protein digestibility of DDGS affected by enzyme treatment 

 

 
Figure 2. Dry matter digestibility of DDGS affected by enzyme treatment 
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Table 1. Chemical composition and energy content of DDGS produced by using different enzymes  

 Control Fermgen Pectinase and Cellulase 

(PC) 

DDGS dry yield, 

g/100 g dry corn 11.53±0.23 a 

 

9.25±0.33 b 9.01±0.35 b 

Ash, % 2.96±0.14 b 3.61±0.13 a 3.50±0.02 a 

Crude Fat, % 8.55±0.68 b 10.84±0.33 a 10.70±0.06 a 

NDF, % 23.39±1.83 c 36.12±1.27 a 28.95±0.65 b 

ADF, % 5.68±0.28 c 9.26±0.39 a 7.46±0.37 b 

ADL, % 0.45±0.07 b 0.75±0.19 a 0.8±0.18 a 

Crude Protein, % 22.41±0.88 b 23.40±0.32 b 26.81±0.28 a 

Gross Eenergy, 

kcal/kg 

4922±9 b 5027±10 a 5020±14 a 

NDF: Neutral detergent fiber; ADF: Acid detergent fiber; ADL: Acid detergent lignin. The values sharing 

the same letter in the same row have no significant different (p>0.05). 
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Table 2. Total and free amino acids of DDGS as affected by enzyme treatments 

 Control Fermgen 

Pectinase and cellulase 

(PC) 

Essential amino acid, mg/g dry matter 

Valine 10.23 9.64 11.78 

Leucine 27.25 26.29 31.14 

Allo-isoleucine 0.00 0.34 0.00 

Isoleucine 8.92 8.43 10.87 

Threonine 7.61 7.79 9.34 

Methionine 3.94 4.09 4.94 

Phenylalanine 11.16 11.03 11.91 

Lysine 7.31 7.41 7.61 

Histidine 8.63 8.04 9.17 

Tryptophan 0.26 0.17 0.38 

Non-essential amino acid, mg/g dry matter 

Alanine 5.51 5.91 5.86 

Sarcosin 0.15 0.39 0.23 

Glycine 9.54 9.14 10.21 

α-Aminobutyric 

acid 0.12 0.12 0.11 

β-Alanin 0.38 0.00 0.00 

Serine 11.40 11.51 12.49 

Proline 12.05 12.29 15.02 

Aspargine 0.36 0.35 0.38 

Aspartic acid 13.93 13.98 15.28 

4-Hydroxyproline 2.06 2.24 3.69 

Glutamic acid 33.11 33.50 38.29 

α-Aminoadipic 

acid 0.90 1.30 0.90 

Glycine-Proline 3.00 2.41 3.16 

Ornithine 3.60 3.42 3.52 

Glutamine 0.53 0.70 0.56 

Tyrosine 4.82 4.88 6.62 

Total amino acid 186.76 b 184.38 b 213.46 a 

Total free amino 

acid  1.13 b 6.57 a 0.93 b 

The values sharing the same lower-case in the same row have no significant different (p>0.05). 
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Table 3. Color and water holding capacity of DDGS from different enzyme treatments 

 L* a* b* 

Water holding capacity 

g water/ g dry DDGS 

Control 45.65±1.59 a 7.55±0.62 a 30.96±1.45 a 3.70±0.09 b 

Fermgen 33.94±0.67 c 7.68±0.40 a 29.36±0.77 a 4.18±0.2 a 

Pectinase and cellulase (PC) 37.51±0.45 b 7.91±0.06 a 30.38±0.43 a 3.29±0.07 c 

L*: lightness; a*: redness; b*: yellowness. The values sharing the same letter in the same column have no 

significant different (p>0.05).   



www.manaraa.com

85 

 

Table 4. Digestible amino acid content and amino acid digestibility of DDGS 

 

Digestible amino acid content, 

mg/g dry matter DDGS 

Amino acid digestibility, % 

Essential amino acid   

 Control Fermgen 

Pectinase 

and 

cellulase  

 

 

Control 

 

 

Fermgen 

Pectinase 

and 

cellulase 

Valine 5.38 2.85 8.00 52.6 29.6 67.9 

Leucine 16.37 10.59 22.97 60.1 40.3 73.8 

Isoleucine 5.99 3.38 7.96 67.2 40.1 73.8 

Threonine 4.08 2.40 6.53 53.6 30.8 69.9 

Methionine 2.88 2.53 3.89 73.1 61.9 78.7 

Phenylalanine 6.67 4.62 8.41 59.8 41.9 70.6 

Lysine 3.68 2.29 3.98 50.3 30.9 52.3 

Histidine 4.52 2.86 4.53 52.4 35.6 49.4 

Tryptophan 0.19 0.11 0.37 73.1 64.7 97.4 

Non-Essential amino acid      

Alanine 3.45 2.28 4.30 62.6 38.6 73.4 

Sarcosin 0.04 0.23 0.10 26.7 59.0 43.5 

Glycine 4.94 2.76 6.51 51.8 30.2 63.8 

α-Aminobutyric 

acid 0.06 0.05 0.05 

 

50.0 

 

41.7 

 

45.5 

Serine 6.28 4.11 9.00 55.1 35.7 72.1 

Proline 6.37 5.33 10.58 52.9 43.4 70.4 

Aspargine 0.15 0.07 0.30 41.7 20.0 78.9 

Aspartic acid 8.09 4.89 10.37 58.1 35.0 67.9 

4-Hydroxyproline 1.28 1.20 3.34 62.1 53.6 90.5 

Glutamic acid 19.35 12.63 26.14 58.4 37.7 68.3 

α-Aminoadipic 

acid 0.60 0.72 0.64 

 

66.7 

 

55.4 

 

71.1 

Glycine-Proline 2.22 1.29 2.48 74.0 53.5 78.5 

Ornithine 2.97 1.57 2.91 82.5 45.9 82.7 

Glutamine 0.33 0.48 0.36 62.3 68.6 64.3 

Tyrosine 3.59 2.86 5.04 74.5 58.6 76.1 
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CHAPTER 5. GENERAL CONCLUSION 

Surfactants and hydrolyzing enzymes have been used during dry-grind ethanol process to improve 

production yields and quality of co-products. Their effects on the process were measured and 

documented.  

Using non-ionic surfactants can increase DCO yield in two ways including increasing oil partition in 

thin stillage and improving oil recovery from CCDS. To increase oil partition in thin stillage, surfactant 

worked as detergent to move surface adhering oil to liquid phase. To increase oil recovery from CCDS, 

surfactant formed an unstable emulsion in CCDS. Silica nano-particles can be used as an oil recovery 

enhancer when added into CCDS with surfactant together. Using surfactant had no negative effects on 

ethanol production. 

The use of hydrolyzing enzymes, i.e., protease, pectinase, and cellulase enzymes, significantly 

increased oil partition in thin stillage and improved ethanol production. However, the use of protease 

enzyme reduced oil recovery from CCDS, probably due to producing partially hydrolyzed protein as 

emulsifier, and this reduction can be overcome by using surfactant. The synergistic effect between 

surfactant and hydrolyzing enzymes can significantly improve DCO yield of dry-grind ethanol process. 

Using hydrolyzing enzymes during fermentation significantly affected composition and digestibility 

DDGS. The use of protease enzyme during fermentation increased fiber content, and reduced protein 

content and protein digestibility. Though the use of pectinase and cellulase enzyme during fermentation 

had a dark color, this treatment increased protein content and digestibility, and provided higher amount of 

required amino acids than other treatments. Comparing with the protease enzyme, which is currently used 

in ethanol plants, pectinase and cellulase mix might be a better choice when high quality DDGS is needed. 
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Both surfactant and hydrolyzing enzymes are good options for ethanol producers to improve 

production and quality of co-products without any change in the current plant design. Further studies are 

needed to confirm these observations in scaled-up operations.  
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